997 resultados para Group rings


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let k be an algebraically closed field of characteristic zero and let L be an algebraic function field over k. Let sigma : L -> L be a k-automorphism of infinite order, and let D be the skew field of fractions of the skew polynomial ring L[t; sigma]. We show that D contains the group algebra kF of the free group F of rank 2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A sigmatropic methyl shift from the angular position C-1 in ring to the position C-20 between rings and constitutes the crucial step in syntheses leading to a 20-methyl-isobacteriochlorin and to 20-methyl-pyrrocorphins which served as substrates in the investigation presented in the accompanying communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the usual formulation of quantum mechanics, groups of automorphisms of quantum states have ray representations by unitary and antiunitary operators on complex Hilbert space, in accordance with Wigner's theorem. In the phase-space formulation, they have real, true unitary representations in the space of square-integrable functions on phase space. Each such phase-space representation is a Weyl–Wigner product of the corresponding Hilbert space representation with its contragredient, and these can be recovered by 'factorizing' the Weyl–Wigner product. However, not every real, unitary representation on phase space corresponds to a group of automorphisms, so not every such representation is in the form of a Weyl–Wigner product and can be factorized. The conditions under which this is possible are examined. Examples are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrable extended Hubbard models arising from symmetric group solutions are examined in the framework of the graded quantum inverse scattering method. The Bethe ansatz equations for all these models are derived by using the algebraic Bethe ansatz method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we characterize the existence and give an expression of the group inverse of a product of two regular elements by means of a ring unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently there has been a great deal of work on noncommutative algebraic cryptography. This involves the use of noncommutative algebraic objects as the platforms for encryption systems. Most of this work, such as the Anshel-Anshel-Goldfeld scheme, the Ko-Lee scheme and the Baumslag-Fine-Xu Modular group scheme use nonabelian groups as the basic algebraic object. Some of these encryption methods have been successful and some have been broken. It has been suggested that at this point further pure group theoretic research, with an eye towards cryptographic applications, is necessary.In the present study we attempt to extend the class of noncommutative algebraic objects to be used in cryptography. In particular we explore several different methods to use a formal power series ring R && x1; :::; xn && in noncommuting variables x1; :::; xn as a base to develop cryptosystems. Although R can be any ring we have in mind formal power series rings over the rationals Q. We use in particular a result of Magnus that a finitely generated free group F has a faithful representation in a quotient of the formal power series ring in noncommuting variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the connection between the Brauer group and the 0-cycles of an algebraic variety. We give an alternative construction of the second l-adic Abel-Jacobi map for such cycles, linked to the algebraic geometry of Severi-Brauer varieties on X. This allows us then to relate this Abel-Jacobi map to the standard pairing between 0-cycles and Brauer groups (see [M], [L]), completing results from [M] in this direction. Second, for surfaces, it allows us to present this map according to the more geometrical approach devised by M. Green in the framework of (arithmetic) mixed Hodge structures (see [G]). Needless to say, this paper owes much to the work of U. Jannsen and, especially, to his recently published older letter [J4] to B. Gross.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solvothermal synthesis and characterisation of [C6H16N2][GaS2]2 (1), [C6H16N2][Ga2Se3(Se2)] (2), and mixed-metal phases with composition [C6H16N2][Ga2–xInxSe3(Se2)] (0 < x < 2)(3–5), is described. These materials have been characterised by single-crystal and powder X-ray diffraction, thermogravimetric analysis and UV/Vis diffuse reflectance spectroscopy. The materials contain one-dimensional anionic chains. In 1, these chains consist of edge-linked GaS4 tetrahedra, whilst in 2–5, the chains contain perselenide (Se2)2– units and comprise alternating four-membered [M2Se2] and five-membered [M2Se3] rings (where M = Ga, In). Compounds 3–5 represent the first examples of ternary mixed-metal [M2Se3(Se2)]2– chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let L be a function field over the rationals and let D denote the skew field of fractions of L[t; sigma], the skew polynomial ring in t, over L, with automorphism sigma. We prove that the multiplicative group D(x) of D contains a free noncyclic subgroup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components We apply our work to obtain similar information about the loop algebras of mdecomposable RA loops and to produce negative answers to the isomorphism problem over various fields (C) 2010 Elsevier Inc All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider locally nilpotent subgroups of units in basic tiled rings A, over local rings O which satisfy a weak commutativity condition. Tiled rings are generalizations of both tiled orders and incidence rings. If, in addition, O is Artinian then we give a complete description of the maximal locally nilpotent subgroups of the unit group of A up to conjugacy. All of them are both nilpotent and maximal Engel. This generalizes our description of such subgroups of upper-triangular matrices over O given in M. Dokuchaev, V. Kirichenko, and C. Polcino Milies (2005) [3]. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we study the invariant rings for the Sylow p-subgroups of the nite classical groups. We have successfully constructed presentations for the invariant rings for the Sylow p-subgroups of the unitary groups GU(3; Fq2) and GU(4; Fq2 ), the symplectic group Sp(4; Fq) and the orthogonal group O+(4; Fq) with q odd. In all cases, we obtained a minimal generating set which is also a SAGBI basis. Moreover, we computed the relations among the generators and showed that the invariant ring for these groups are a complete intersection. This shows that, even though the invariant rings of the Sylow p-subgroups of the general linear group are polynomial, the same is not true for Sylow p-subgroups of general classical groups. We also constructed the generators for the invariant elds for the Sylow p-subgroups of GU(n; Fq2 ), Sp(2n; Fq), O+(2n; Fq), O-(2n + 2; Fq) and O(2n + 1; Fq), for every n and q. This is an important step in order to obtain the generators and relations for the invariant rings of all these groups.