941 resultados para Group delay dispersion
Resumo:
理论分析和讨论了基于频域相位共轭技术的交叉相位调制所致信号失真的复原和补偿机理,数值模拟了在交叉相位调制作用下,高斯脉冲在中距相位共轭光纤系统中的传输演化过程.结果表明,频域相位共轭技术能够抑制交叉相位调制对光纤系统中传输信号的损害,复原其所导致的信号失真,并能够同步补偿群速度色散和自相位调制非线性效应所导致的信号失真.合适的初始脉冲时延和初始脉冲啁啾有利于频域相位共轭技术对交叉相位调制所致信号失真的抑制.
Resumo:
We investigate the dispersion properties of nanometer-scaled silicon waveguides with channel and rib cross section around the optical fiber communication wavelength and systematically study their relationship with the key structural parameters of the waveguide. The simulation results show that the introduction of an extra degree of freedom in the rib depth enables the rib waveguide more flexible in engineering the group velocity dispersion (GVD) compared with the channel waveguide. Besides, we get the structural parameters of the waveguides that can realize zero-GVD at 1550 nm.
Resumo:
O presente trabalho tem como objectivo o estudo e projecto de receptores optimizados para sistemas de comunicações por fibra óptica de muito alto débito (10Gb/s e 40Gb/s), com a capacidade integrada de compensação adaptativa pós-detecção da distorção originada pela característica de dispersão cromática e de polarização do canal óptico. O capítulo 1 detalha o âmbito de aplicabilidade destes receptores em sistemas de comunicações ópticas com multiplexagem no comprimento de onda (WDM) actuais. O capítulo apresenta ainda os objectivos e principais contribuições desta tese. O capítulo 2 detalha o projecto de um amplificador pós-detecção adequado para sistemas de comunicação ópticos com taxa de transmissão de 10Gb/s. São discutidas as topologias mais adequadas para amplificadores pós detecção e apresentados os critérios que ditaram a escolha da topologia de transimpedância bem como as condições que permitem optimizar o seu desempenho em termos de largura de banda, ganho e ruído. Para além disso são abordados aspectos relacionados com a implementação física em tecnologia monolítica de microondas (MMIC), focando em particular o impacto destes no desempenho do circuito, como é o caso do efeito dos componentes extrínsecos ao circuito monolítico, em particular as ligações por fio condutor do monólito ao circuito externo. Este amplificador foi projectado e produzido em tecnologia pHEMT de Arsenieto de Gálio e implementado em tecnologia MMIC. O protótipo produzido foi caracterizado na fábrica, ainda na bolacha em que foi produzido (on-wafer) tendo sido obtidos dados de caracterização de 80 circuitos protótipo. Estes foram comparados com resultados de simulação e com desempenho do protótipo montado num veículo de teste. O capítulo 3 apresenta o projecto de dois compensadores eléctricos ajustáveis com a capacidade de mitigar os efeitos da dispersão cromática e da dispersão de polarização em sistemas ópticos com débito binário de 10Gb/s e 40Gb/s, com modulação em banda lateral dupla e banda lateral única. Duas topologias possíveis para este tipo de compensadores (a topologia Feed-Forward Equalizer e a topologia Decision Feedback Equaliser) são apresentadas e comparadas. A topologia Feed-Forward Equaliser que serviu de base para a implementação dos compensadores apresentados é analisada com mais detalhe sendo propostas alterações que permitem a sua implementação prática. O capítulo apresenta em detalhe a forma como estes compensadores foram implementados como circuitos distribuídos em tecnologia MMIC sendo propostas duas formas de implementar as células de ganho variável: com recurso à configuração cascode ou com recurso à configuração célula de Gilbert. São ainda apresentados resultados de simulação e experimentais (dos protótipos produzidos) que permitem tirar algumas conclusões sobre o desempenho das células de ganho com as duas configurações distintas. Por fim, o capítulo inclui ainda resultados de desempenho dos compensadores testados como compensadores de um sinal eléctrico afectado de distorção. No capítulo 4 é feita uma análise do impacto da modulação em banda lateral dupla (BLD) em comparação com a modulação em banda lateral única (BLU) num sistema óptico afectado de dispersão cromática e de polarização. Mostra-se que com modulação em BLU, como não há batimento entre portadoras das duas bandas laterais em consequência do processo quadrático de detecção e há preservação da informação da distorção cromática do canal (na fase do sinal), o uso deste tipo de modulação em sistemas de comunicação óptica permite maior tolerância à dispersão cromática e os compensadores eléctricos são muito mais eficientes. O capítulo apresenta ainda resultados de teste dos compensadores desenvolvidos em cenários experimentais de laboratório representativos de sistemas ópticos a 10Gb/s e 40Gb/s. Os resultados permitem comparar o desempenho destes cenários sem e com compensação eléctrica optimizada, para os casos de modulação em BLU e em BLD, e considerando ainda os efeitos da dispersão na velocidade de grupo e do atraso de grupo diferencial. Mostra-se que a modulação BLU em conjunto com compensação adaptativa eléctrica permite um desempenho muito superior á modulação em BLD largamente utilizada nos sistemas de comunicações actuais. Por fim o capítulo 5 sintetiza e apresenta as principais conclusões deste trabalho.
Resumo:
O presente trabalho tem por objectivo o estudo de novos dispositivos fotónicos aplicados a sistemas de comunicações por fibra óptica e a sistemas de processamento de sinais RF. Os dispositivos apresentados baseiam-se em processamento de sinal linear e não linear. Dispositivos lineares ópticos tais como o interferómetro de Mach-Zehnder permitem adicionar sinais ópticos com pesos fixos ou sintonizáveis. Desta forma, este dispositivo pode ser usado respectivamente como um filtro óptico em amplitude com duas saídas complementares, ou, como um filtro óptico de resposta de fase sintonizável. O primeiro princípio de operação serve como base para um novo sistema fotónico de medição em tempo real da frequência de um sinal RF. O segundo princípio de operação é explorado num novo sistema fotónico de direccionamento do campo eléctrico radiado por um agregado de antenas, e também num novo compensador sintonizável de dispersão cromática. O processamento de sinal é não linear quando sinais ópticos são atrasados e posteriormente misturados entre si, em vez de serem linearmente adicionados. Este princípio de operação está por detrás da mistura de um sinal eléctrico com um sinal óptico, que por sua vez é a base de um novo sistema fotónico de medição em tempo real da frequência de um sinal RF. A mistura de sinais ópticos em meios não lineares permite uma operação eficiente numa grande largura espectral. Tal operação é usada para realizar conversão de comprimento de onda sintonizável. Um sinal óptico com multiplexagem no domínio temporal de elevada largura de banda é misturado com duas bombas ópticas não moduladas com base em processos não lineares paramétricos num guia de ondas de niobato de lítio com inversão periódica da polarização dos domínios ferroeléctricos. Noutro trabalho, uma bomba pulsada em que cada pulso tem um comprimento de onda sintonizável serve como base a um novo conversor de sinal óptico com multiplexagem no domínio temporal para um sinal óptico com multiplexagem no comprimento de onda. A bomba é misturada com o sinal óptico de entrada através de um processo não linear paramétrico numa fibra óptica com parâmetro não linear elevado. Todos os dispositivos fotónicos de processamento de sinal linear ou não linear propostos são experimentalmente validados. São também modelados teoricamente ou através de simulação, com a excepção dos que envolvem mistura de sinais ópticos. Uma análise qualitativa é suficiente nestes últimos dispositivos.
Resumo:
We experimentally revisit a technique of low-cost multiparameter monitor for optical performance monitoring based on low frequency polarization modulation. A simplified calibration procedure, which significantly reduces the mathematical complexity and processing effort is proposed. Validation is achieved by carrying out relative optical power, wavelength, and differential group delay measurements. (C) 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:18201824, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26956
Resumo:
Con esta disertación se pretenden resolver algunos de los problemas encontrados actualmente en la recepción de señales de satélites bajo dos escenarios particularmente exigentes: comunicaciones de Espacio Profundo y en banda Ka. Las comunicaciones con sondas de Espacio Profundo necesitan grandes aperturas en tierra para poder incrementar la velocidad de datos. La opción de usar antennas con diámetro mayor de 35 metros tiene serios problemas, pues antenas tan grandes son caras de mantener, difíciles de apuntar, pueden tener largos tiempo de reparación y además tienen una efeciencia decreciente a medida que se utilizan bandas más altas. Soluciones basadas en agrupaciones de antenas de menor tamaño (12 ó 35 metros) son mas ecónomicas y factibles técnicamente. Las comunicaciones en banda Ka tambien pueden beneficiarse de la combinación de múltiples antennas. Las antenas de menor tamaño son más fáciles de apuntar y además tienen un campo de visión mayor. Además, las técnicas de diversidad espacial pueden ser reemplazadas por una combinación de antenas para así incrementar el margen del enlace. La combinación de antenas muy alejadas sobre grandes anchos de banda, bien por recibir una señal de banda ancha o múltiples de banda estrecha, es complicada técnicamente. En esta disertación se demostrará que el uso de conformador de haz en el dominio de la frecuencia puede ayudar a relajar los requisitos de calibración y, al mismo tiempo, proporcionar un mayor campo de visión y mayores capacidades de ecualización. Para llevar esto a cabo, el trabajo ha girado en torno a tres aspectos fundamentales. El primero es la investigación bibliográfica del trabajo existente en este campo. El segundo es el modelado matemático del proceso de combinación y el desarrollo de nuevos algoritmos de estimación de fase y retardo. Y el tercero es la propuesta de nuevas aplicaciones en las que usar estas técnicas. La investigación bibliográfica se centra principalmente en los capítulos 1, 2, 4 y 5. El capítulo 1 da una breve introducción a la teoría de combinación de antenas de gran apertura. En este capítulo, los principales campos de aplicación son descritos y además se establece la necesidad de compensar retardos en subbandas. La teoría de bancos de filtros se expone en el capítulo 2; se selecciona y simula un banco de filtros modulado uniformemente con fase lineal. Las propiedades de convergencia de varios filtros adaptativos se muestran en el capítulo 4. Y finalmente, las técnicas de estimación de retardo son estudiadas y resumidas en el capítulo 5. Desde el punto de vista matemático, las principales contribución de esta disertación han sido: • Sección 3.1.4. Cálculo de la desviación de haz de un conformador de haz con compensación de retardo en pasos discretos en frecuencia intermedia. • Sección 3.2. Modelo matemático de un conformador de haz en subbandas. • Sección 3.2.2. Cálculo de la desviación de haz de un conformador de haz en subbandas con un buffer de retardo grueso. • Sección 3.2.4. Análisis de la influencia de los alias internos en la compensación en subbandas de retardo y fase. • Sección 3.2.4.2. Cálculo de la desviación de haz de un conformador de haz con compensación de retardo en subbandas. • Sección 3.2.6. Cálculo de la ganancia de relación señal a ruido de la agrupación de antenas en cada una de las subbandas. • Sección 3.3.2. Modelado de la función de transferencia de la agrupación de antenas bajo errores de estimación de retardo. • Sección 3.3.3. Modelado de los efectos de derivas de fase y retardo entre actualizaciones de las estimaciones. • Sección 3.4. Cálculo de la directividad de la agrupación de antenas con y sin compensación de retardos en subbandas. • Sección 5.2.6. Desarrollo de un algorimo para estimar la fase y el retardo entre dos señales a partir de su descomposición de subbandas bajo entornos estacionarios. • Sección 5.5.1. Desarrollo de un algorimo para estimar la fase, el retardo y la deriva de retardo entre dos señales a partir de su descomposición de subbandas bajo entornos no estacionarios. Las aplicaciones que se pueden beneficiar de estas técnicas son descritas en el capítulo 7: • Sección 6.2. Agrupaciones de antenas para comunicaciones de Espacio Profundo con capacidad multihaz y sin requisitos de calibración geométrica o de retardo de grupo. • Sección 6.2.6. Combinación en banda ancha de antenas con separaciones de miles de kilómetros, para recepción de sondas de espacio profundo. • Secciones 6.4 and 6.3. Combinación de estaciones remotas en banda Ka en escenarios de diversidad espacial, para recepción de satélites LEO o GEO. • Sección 6.3. Recepción de satélites GEO colocados con arrays de antenas multihaz. Las publicaciones a las que ha dado lugar esta tesis son las siguientes • A. Torre. Wideband antenna arraying over long distances. Interplanetary Progress Report, 42-194:1–18, 2013. En esta pulicación se resumen los resultados de las secciones 3.2, 3.2.2, 3.3.2, los algoritmos en las secciones 5.2.6, 5.5.1 y la aplicación destacada en 6.2.6. • A. Torre. Reception of wideband signals from geostationary collocated satellites with antenna arrays. IET Communications, Vol. 8, Issue 13:2229–2237, September, 2014. En esta segunda se muestran los resultados de la sección 3.2.4, el algoritmo en la sección 5.2.6.1 , y la aplicación mostrada en 6.3. ABSTRACT This dissertation is an attempt to solve some of the problems found nowadays in the reception of satellite signals under two particular challenging scenarios: Deep Space and Ka-band communications. Deep Space communications require from larger apertures on ground in order to increase the data rate. The option of using single dishes with diameters larger than 35 meters has severe drawbacks. Such antennas are expensive to maintain, prone to long downtimes, difficult to point and have a degraded performance in high frequency bands. The array solution, either with 12 meter or 35 meter antennas is deemed to be the most economically and technically feasible solution. Ka-band communications can also benefit from antenna arraying technology. The smaller aperture antennas that make up the array are easier to point and have a wider field of view allowing multiple simultaneous beams. Besides, site diversity techniques can be replaced by pure combination in order to increase link margin. Combination of far away antennas over a large bandwidth, either because a wideband signal or multiple narrowband signals are received, is a demanding task. This dissertation will show that the use of frequency domain beamformers with subband delay compensation can help to ease calibration requirements and, at the same time, provide with a wider field of view and enhanced equalization capabilities. In order to do so, the work has been focused on three main aspects. The first one is the bibliographic research of previous work on this subject. The second one is the mathematical modeling of the array combination process and the development of new phase/delay estimation algorithms. And the third one is the proposal of new applications in which these techniques can be used. Bibliographic research is mainly done in chapters 1, 2, 4 and 5. Chapter 1 gives a brief introduction to previous work in the field of large aperture antenna arraying. In this chapter, the main fields of application are described and the need for subband delay compensation is established. Filter bank theory is shown in chapter 2; a linear phase uniform modulated filter bank is selected and simulated under diverse conditions. The convergence properties of several adaptive filters are shown in chapter 4. Finally, delay estimation techniques are studied and summarized in chapter 5. From a mathematical point of view, the main contributions of this dissertation have been: • Section 3.1.4. Calculation of beam squint of an IF beamformer with delay compensation at discrete time steps. • Section 3.2. Establishment of a mathematical model of a subband beamformer. • Section 3.2.2. Calculation of beam squint in a subband beamformer with a coarse delay buffer. • Section 3.2.4. Analysis of the influence of internal aliasing on phase and delay subband compensation. • Section 3.2.4.2. Calculation of beam squint of a beamformer with subband delay compensation. • Section 3.2.6. Calculation of the array SNR gain at each of the subbands. • Section 3.3.2. Modeling of the transfer function of an array subject to delay estimation errors. • Section 3.3.3. Modeling of the effects of phase and delay drifts between estimation updates. • Section 3.4. Calculation of array directivity with and without subband delay compensation. • Section 5.2.6. Development of an algorithm to estimate relative delay and phase between two signals from their subband decomposition in stationary environments. • Section 5.5.1. Development of an algorithm to estimate relative delay rate, delay and phase between two signals from their subband decomposition in non stationary environments. The applications that can benefit from these techniques are described in chapter 7: • Section 6.2. Arrays of antennas for Deep Space communications with multibeam capacity and without geometric or group delay calibration requirement. • Section 6.2.6. Wideband antenna arraying over long distances, in the range of thousands of kilometers, for reception of Deep Space probes. • Sections 6.4 y 6.3. Combination of remote stations in Ka-band site diversity scenarios for reception of LEO or GEO satellites. • Section 6.3. Reception of GEO collocated satellites with multibeam antenna arrays. The publications that have been made from the work in this dissertation are • A. Torre. Wideband antenna arraying over long distances. Interplanetary Progress Report, 42-194:1–18, 2013. This article shows the results in sections 3.2, 3.2.2, 3.3.2, the algorithms in sections 5.2.6, 5.5.1 and the application in section 6.2.6. • A. Torre. Reception of wideband signals from geostationary collocated satellites with antenna arrays. IET Communications, Vol. 8, Issue 13:2229–2237, September, 2014. This second article shows among others the results in section 3.2.4, the algorithm in section 5.2.6.1 , and the application in section 6.3.
Resumo:
A novel direct integration technique of the Manakov-PMD equation for the simulation of polarisation mode dispersion (PMD) in optical communication systems is demonstrated and shown to be numerically as efficient as the commonly used coarse-step method. The main advantage of using a direct integration of the Manakov-PMD equation over the coarse-step method is a higher accuracy of the PMD model. The new algorithm uses precomputed M(w) matrices to increase the computational speed compared to a full integration without loss of accuracy. The simulation results for the probability distribution function (PDF) of the differential group delay (DGD) and the autocorrelation function (ACF) of the polarisation dispersion vector for varying numbers of precomputed M(w) matrices are compared to analytical models and results from the coarse-step method. It is shown that the coarse-step method achieves a significantly inferior reproduction of the statistical properties of PMD in optical fibres compared to a direct integration of the Manakov-PMD equation.
Resumo:
We analytically and numerically analyze the occurrence of modulational instability in fibers with periodic changes in the group-velocity dispersion. For small variations, a set of resonances occurs in the gain spectrum. However, large dispersion variations eliminate these resonances and restrict the bandwidth of the fundamental gain spectrum. This research has been motivated by the adoption of dispersion management techniques in long-haul optical communications.
Resumo:
Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.
Resumo:
We demonstrate that the transmission of 40 Gbits/s return-to-zero differential phase-shift keying (RZ-DPSK) signals is robust to lumped dispersion mapping on a typical installed terrestrial single-mode fiber/dispersion compensating fiber (SMF-DCF) link and will withstand, in this case, propagation through over 800 km of SMF with zero in-line group-velocity dispersion compensation while maintaining similar performance to configurations with periodic mapping. We establish that upgrading similar point-to-point links, which have lumped dispersion maps, are compatible with 40 Gbits/s RZ-DPSK and that economic benefits can be realized when implementing lumped dispersion mapping in new 40 Gbits/s RZ-DPSK terrestrial links, while incurring a relatively low performance penalty. (c) 2008 Optical Society of America.
Resumo:
Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.
Resumo:
We analytically and numerically analyze the occurrence of modulational instability in fibers with periodic changes in the group-velocity dispersion. For small variations, a set of resonances occurs in the gain spectrum. However, large dispersion variations eliminate these resonances and restrict the bandwidth of the fundamental gain spectrum. This research has been motivated by the adoption of dispersion management techniques in long-haul optical communications.
Resumo:
A coupled resonator optical waveguide (CROW) bottle is a bottle-shaped nonuniform distribution of resonator and coupling parameters. This Letter solves the inverse problem for a CROW bottle, i.e., develops a simple analytical method that determines a CROW with the required group delay and dispersion characteristics. In particular, the parameters of CROWs exhibiting the group delay with zero dispersion (constant group delay) and constant dispersion (linear group delay) are found. © 2014 Optical Society of America.
Resumo:
A single-pulse actively mode-locked fibre laser with a cavity length exceeding 1 km has been developed and investigated for the first time. This all-fibre erbium-doped laser has a normal intracavity dispersion and generates dissipative 8-ns solitons with a fundamental repetition rate of 163.8 kHz; the energy per pulse reaches 34 nJ. The implemented mode locking, based on the use of intracavity intensity modulator, provides self-triggering and high stability of pulsed lasing. A possibility of continuous tuning of the centre lasing wavelength in the range of 1558 - 1560 nm without any tunable spectral selective elements in the cavity is demonstrated. The tuning occurs when controlling the modulation signal frequency due to the forced change in the pulse repetition time (group delay) under the conditions of intracavity chromatic dispersion. © 2013 Kvantovaya Elektronika and Turpion Ltd.
Resumo:
We study the probability density function of the group-delay in few-mode fibres, validating for the first time an analytical estimation for the maximum group-delay spread as a function of linear mode coupling for fibres with more than three LP modes.