960 resultados para Gfp-like Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined the crystal structure of HcRed, a far-red fluorescent protein isolated from Heteractis crispa, to 2.1 resolution. HcRed was observed to form a dimer, in contrast to the monomeric form of green fluorescent protein (GFP) or the tetrameric forms of the GFP-like proteins (eqFP611, Rtms5 and DsRed). Unlike the well-defined chromophore conformation observed in GFP and the GFP-like proteins, the HcRed chromophore was observed to be considerably mobile. Within the HcRed structure, the cyclic tripeptide chromophore, Glu64-Tyr65-Gly66, was observed to adopt both a cis coplanar and a tran. non-coplanar conformation. As a result of these two con formations, the hydroxyphenyl moiety of the chromophore makes distinct interactions within the interior of the b-can. These data together with a quantum chemical model of the chromophore, suggest the cis coplanar conformation to be consistent with the fluorescent properties of HcRed, and the trans non-coplanar conformation to be consistent with non-fluorescent properties of hcCP, the chromoprotein parent of HcRed. Moreover, within the GFP-like family, it appears that where conformational freedom is permissible then flexibility in the chromophore conformation is possible. 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extension of the conjugated pi-system of many all-protein chromophores with an acylimine bond is the basis for their red-shifted optical properties. The presence of this post-translational modification is evident in crystal structures of these proteins. Harsh denaturation of proteins containing an acylimine bond results in partial polypeptide cleavage. For the red fluorescent protein DsRed, the extent of cleavage is quantitative. However, this is not the case for the blue non-fluorescent chromoprotein Rtms5, even though all chromophores in tetrameric Rtms5 contain an acylimine bond. We have identified two positions around the chromophore of Rtms5 where substitutions can promote or suppress the extent of cleavage on harsh denaturation. We propose a model in which cleavage of Rtms5 is facilitated by a trans to cis isomerisation of the chromophore. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using in situ spectrometry data and visual system modeling, we investigate whether the colors conferred to the reef-building corals by GFP-like proteins would look colorful not only to humans, but also to fish occupying different ecological niches on the reef. Some GFP-like proteins, most notably fluorescent greens and nonfluorescent chromoproteins, indeed generate intense color signals. An unexpected finding was that fluorescent proteins might also make corals appear less colorful to fish, counterbalancing the effect of absorption by the photosynthetic pigments of the endosymbiotic algae, which might be a form of protection against herbivores. We conclude that GFP-determined coloration of corals may be an important factor in visual ecology of the reef fishes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The green fluorescent protein (avGFP), its variants, and the closely related GFP-like proteins are characterized structurally by a cyclic tri-peptide chromophore located centrally within a conserved beta-can fold. Traditionally, these GFP family members have been isolated from the Cnidaria although recently, distantly related GFP-like proteins from the Bilateria, a sister group of the Cnidaria have been described, although no representative structure from this phylum has been reported to date. We have determined to 2.1 angstrom resolution the crystal structure of copGFP, a representative GFP-like protein from a copepod, a member of the Bilateria. The structure of copGFP revealed that, despite sharing only 19% sequence identity with GFP, the tri-peptide chromophore (Gly57-Tyr58-Gly59) of copGFP adopted a cis coplanar conformation within the conserved beta-can fold. However, the immediate environment surrounding the chromophore of copGFP was markedly atypical when compared to other members of the GFP-superfamily, with a large network of bulky residues observed to surround the chromophore. Arg87 and Glu222 (GFP numbering 96 and 222), the only two residues conserved between copGFP, GFP and GFP-like proteins are involved in autocatalytic genesis of the chromophore. Accordingly, the copGFP structure provides an alternative platform for the development of a new suite of fluorescent protein tools. Moreover, the structure suggests that the autocatalytic genesis of the chromophore is remarkably tolerant to a high degree of sequence and structural variation within the beta-can fold of the GFP superfamily. (c) 2006 Elsevier Ltd . All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K(+)-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K(+) channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K(+) influx. We further suggest that K(+) influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe Mei2 gene encodes an RNA recognition motif (RRM) protein that stimulates meiosis upon binding a specific non-coding RNA and subsequent accumulation in a “mei2-dot” in the nucleus. We present here the first systematic characterization of the family of proteins with characteristic Mei2-like amino acid sequences. Mei2-like proteins are an ancient eukaryotic protein family with three identifiable RRMs. The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is the most highly conserved of the three RRMs. RRM3 also contains conserved sequence elements at its C-terminus not found in other RRM domains. Single copy Mei2-like genes are present in some fungi, in alveolates such as Paramecium and in the early branching eukaryote Entamoeba histolytica, while plants contain small families of Mei2-like genes. While the C-terminal RRM is highly conserved between plants and fungi, indicating conservation of molecular mechanisms, plant Mei2-like genes have changed biological context to regulate various aspects of developmental pattern formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Guanylyl cyclases (GCs) are enzymes that generate cyclic GMP and regulate different physiologic and developmental processes in a number of organisms. GCs possess sequence similarity to class III adenylyl cyclases (ACs) and are present as either membrane-bound receptor GCs or cytosolic soluble GCs. We sought to determine the evolution of GCs using a large-scale bioinformatic analysis and found multiple lineage-specific expansions of GC genes in the genomes of many eukaryotes. Moreover, a few GC-like proteins were identified in prokaryotes, which come fused to a number of different domains, suggesting allosteric regulation of nucleotide cyclase activity Eukaryotic receptor GCs are associated with a kinase homology domain (KHD), and phylogenetic analysis of these proteins suggest coevolution of the KHD and the associated cyclase domain as well as a conservation of the sequence and the size of the linker region between the KHD and the associated cyclase domain. Finally, we also report the existence of mimiviral proteins that contain putative active kinase domains associated with a cyclase domain, which could suggest early evolution of the fusion of these two important domains involved in signa transduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An analysis of the Mycobacterium smegmatis genome suggests that it codes for several thiolases and thiolase-like proteins. Thiolases are an important family of enzymes that are involved in fatty acid metabolism. They occur as either dimers or tetramers. Thiolases catalyze the Claisen condensation of two acetyl-Coenzyme A molecules in the synthetic direction and the thiolytic cleavage of 3-ketoacyl-Coenzyme A molecules in the degradative direction. Some of the M. smegmatis genes have been annotated as thiolases of the poorly characterized SCP2-thiolase subfamily. The mammalian SCP2-thiolase consists of an N-terminal thiolase domain followed by an additional C-terminal domain called sterol carrier protein-2 or SCP2. The M. smegmatis protein selected in the present study, referred to here as the thiolase-like protein type 1 (MsTLP1), has been biochemically and structurally characterized. Unlike classical thiolases, MsTLP1 is a monomer in solution. Its structure has been determined at 2.7 angstrom resolution by the single wavelength anomalous dispersion method. The structure of the protomer confirms that the N-terminal domain has the thiolase fold. An extra C-terminal domain is indeed observed. Interestingly, it consists of six beta-strands forming an anti-parallel beta-barrel which is completely different from the expected SCP2-fold. Detailed sequence and structural comparisons with thiolases show that the residues known to be essential for catalysis are not conserved in MsTLP1. Consistent with this observation, activity measurements show that MsTLP1 does not catalyze the thiolase reaction. This is the first structural report of a monomeric thiolase-like protein from any organism. These studies show that MsTLP1 belongs to a new group of thiolase related proteins of unknown function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three 26 kDa proteins, named as TJ-CRVP, NA-CRVP1 and NA-CRVP2, were isolated from the venoms of Trimeresurus jerdonii and Naja atra, respectively. The N-terminal sequences of TJ-CRVP and NA-CRVPs were determined. These components were devoid of the enzymatic activities tested, such as phospholipase A(2), arginine esterase, proteolysis, L-amino acid oxidase, 5' nucleotidase, acetylcholinesterase. Furthermore, these three components did not have the following biological activities: coagulant and anticoagulant activities, lethal activity, myotoxicity, hemorrhagic activity, platelet aggregation and platelet aggregation-inhibiting activities. These proteins are named as cysteine-rich venom protein (CRVP) because their sequences showed high level of similarity with mammalian cysteine-rich secretory protein (CRISP) family. Recently, some CRISP-like proteins were also isolated from several different snake venoms, including Agkistrodon blomhoffi, Trimeresurus flavoviridis, Lanticauda semifascita and king cobra. We presumed that CRVP might be a common component in snake venoms. Of particular interest, phylogenetic analysis and sequence alignment showed that NA-CRVP1 and ophanin, both from elapid snakes, share higher similarity with CRVPs from Viperidae snakes. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Peritrophin, one of the components of the peritrophic matrix, was first isolated from the intestine of insects. It is thought to protect insects from invasion of microorganisms and to stimulate digestion of food. Peritrophin-like proteins have also been found in crustaceans, as a component of the egg layer. In this study, one fragment of the peritrophin-like gene was obtained from fleshy prawn (Chinese shrimp) (Fenneropenaeus chinensis) by panning the T7 phage display library constructed with the shrimp hemocyte cDNA. The total sequence of the peritrophin cDNA was cloned by modified SMART cDNA and LD-PCR methods. The full cDNA is 1048 bp and the deduced protein is composed of 274 amino acids, including 21 amino acid signal peptide, and four peritrophin A domains and the latter three forming three chitin-binding domains. Similarity analysis results showed that the peritrophin-like protein from F chinensis has significant similarities with peritrophin-like and cortical rod proteins from other shrimp. It was inducing expression in hemocytes, heart, stomach, gut, and gills of the infected shrimp, and constitutive expression in the ovaries. No expression signal was detected in the hepatopancreas of either infected or noninfected shrimp. The recombinant peritrophin-like protein has the activity of binding Gram-negative bacteria and strong binding activity to chitin. Therefore, the bacteria and chitin binding activities of the peritrophin-like protein suggest that it may plays a role in immune defense and other physiological resposes. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diverse nifH and nifH-like gene sequences were obtained from the deep-sea surface sediments of the methane hydrate-bearing Okhotsk Sea. Some sequences formed novel families of the NifH or NifH-like proteins, of currently unresolved bacterial or archaeal origin. Comparison with other marine environments indicates environmental specificity of some of the sequences, either unique to the methane seep sediments of the Okhotsk Sea or to the general deep-sea methane seep sedimentary environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The excretory-secretory (ES) proteins of nematode parasites are of major interest as they function at the host-parasite interface and are likely to have roles crucial for successful parasitism. Furthermore, the ES proteins of intracellular nematodes such as Trichinella spiralis may also function to regulate gene expression in the host cell. In a recent proteomic analysis we identified a novel secreted cystatin-like protein from T. spiralis L1 muscle larva. Here we show that the protein, MCD-1 (multi-cystatin-like domain protein 1), contains three repeating cystatin-like domains and analysis of the mcd-1 gene structure suggests that the repeated domains arose from duplication of an ancestral cystatin gene. Cystatins are a diverse group of cysteine protease inhibitors and those secreted by parasitic nematodes are important immuno-modulatory factors. The cystatin superfamily also includes cystatin-like proteins that have no cysteine protease inhibitory activity. A recombinant MCD-1 protein expressed as a GST-fusion protein in Escherichia coli failed to inhibit papain in vitro suggesting that the T. spiralis protein is a new member of the non-inhibitory cystatin-related proteins. MCD-1 secreted from T. spiralis exists as high- and low-molecular weight isoforms and we show that a recombinant MCD-1 protein secreted by HeLa cells undergoes pH-dependent processing that may result in the release of individual cystatin-like domains. Furthermore, we found that mcd-1 gene expression is largely restricted to intracellular stages with the highest levels of expression in the adult worms. It is likely that the major role of the protein is during the intestinal stage of T. spiralis infections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant embryogenesis is intimately associated with programmed cell death. The mechanisms of initiation and control of programmed cell death during plant embryo development are not known. Proteolytic activity associated with caspase-like proteins is paramount for control of programmed cell death in animals and yeasts. Caspase family of proteases has unique strong preference for cleavage of the target proteins next to asparagine residue. In this work, we have used synthetic peptide substrates containing caspase recognition sites and corresponding specific inhibitors to analyse the role of caspase-like activity in the regulation of programmed cell death during plant embryogenesis. We demonstrate that VEIDase is a principal caspase-like activity implicated in plant embryogenesis. This activity increases at the early stages of embryo development that coincide with massive cell death during shape remodeling. The VEIDase activity exhibits high sensitivity to pH, ionic strength and Zn2+ concentration. Altogether, biochemical assays show that VEIDase plant caspase-like activity resembles that of both mammalian caspase-6 and yeast metacaspase, YCA1. In vivo, VEIDase activity is localised specifically in the embryonic cells during both the commitment and in the beginning of the execution phase of programmed cell death. Inhibition of VEIDase prevents normal embryo development via blocking the embryo-suspensor differentiation. Our data indicate that the VEIDase activity is an integral part in the control of plant developmental cell death programme, and that this activity is essential for the embryo pattern formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Major ampullate silk fibers of orb web-weaving spiders have impressive mechanical properties due to the fact that the underlying proteins partially fold into helical/amorphous structures, yielding relatively elastic matrices that are toughened by anisotropic nanoparticulate inclusions (formed from stacks of beta-sheets of the same proteins). In vivo the transition from soluble protein to solid fibers involves a combination of chemical and mechanical stimuli (such as ion exchange, extraction of water and shear forces). Here we elucidate the effects of such stimuli on the in vitro aggregation of engineered and recombinantly produced major ampullate silk-like proteins (focusing on structure-function relationships with respect to their primary structures), and discuss their relevance to the storage and assembly of spider silk proteins in vivo. (C) 2009 Elsevier Inc. All rights reserved.