992 resultados para Generalized seduction theory
Resumo:
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.
Resumo:
We continue the investigation of the algebraic and topological structure of the algebra of Colombeau generalized functions with the aim of building up the algebraic basis for the theory of these functions. This was started in a previous work of Aragona and Juriaans, where the algebraic and topological structure of the Colombeau generalized numbers were studied. Here, among other important things, we determine completely the minimal primes of (K) over bar and introduce several invariants of the ideals of 9(Q). The main tools we use are the algebraic results obtained by Aragona and Juriaans and the theory of differential calculus on generalized manifolds developed by Aragona and co-workers. The main achievement of the differential calculus is that all classical objects, such as distributions, become Cl-functions. Our purpose is to build an independent and intrinsic theory for Colombeau generalized functions and place them in a wider context.
Resumo:
We discuss an algebraic theory for generalized Jordan chains and partial signatures, that are invariants associated to sequences of symmetric bilinear forms on a vector space. We introduce an intrinsic notion of partial signatures in the Lagrangian Grassmannian of a symplectic space that does not use local coordinates, and we give a formula for the Maslov index of arbitrary real analytic paths in terms of partial signatures.
Resumo:
In this work we define the composite function for a special class of generalized mappings and we study the invertibility for a certain class of generalized functions with real values.
Resumo:
We defined generalized Heaviside functions for a variable x in R-n, and for variables (x, t) in R-n x R-m. Then study properties such as: composition, invertibility, and association relation (the weak equality). This work is developed in the Colombeau generalized functions context.
Resumo:
In the present paper, we discuss a generalized theory of electrical characteristics for amorphous semiconductor (or insulator) Schottky barriers, considering: (i) surface states, (ii) doping impurity states at a single energy level and (iii) energetically distributed bulk impurity states. We also consider a thin oxide layer (≈10 Å) between metal and semiconductor. We develop current versus applied potential characteristics considering the variation of the Fermi level very close to contact inside the semiconductor and decrease in barrier height due to the image force effect as well as potential fall on the oxide layer. Finally, we discuss the importance of each parameter, i.e. surface states, distributed impurity states, doping impurity states, thickness of oxide layer etc. on the log I versus applied potential characteristics. The present theory is also applicable for intimate contact, i.e. metal-semiconductor contact, crystalline material structures or for Schottky barriers in insulators or polymers.
Resumo:
In Colombeau's theory, given an open subset Ω of ℝn, there is a differential algebra G(Ω) of generalized functions which contains in a natural way the space D′(Ω) of distributions as a vector subspace. There is also a simpler version of the algebra G,(Ω). Although this subalgebra does not contain, in canonical way, the space D′(Ω) is enough for most applications. This work is developed in the simplified generalized functions framework. In several applications it is necessary to compute higher intrinsic derivatives of generalized functions, and since these derivatives are multilinear maps, it is necessary to define the space of generalized functions in Banach spaces. In this article we introduce the composite function for a special class of generalized mappings (defined in open subsets of Banach spaces with values in Banach spaces) and we compute the higher intrinsic derivative of this composite function.
Resumo:
Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.
Resumo:
A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.
Resumo:
Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exist, including total variation regularization, mean shift clustering, stepwise jump placement, running medians, convex clustering shrinkage and bilateral filtering; conventional linear signal processing methods are fundamentally unsuited. This paper (part I, the first of two) shows that most of these methods are associated with a special case of a generalized functional, minimized to achieve PWC denoising. The minimizer can be obtained by diverse solver algorithms, including stepwise jump placement, convex programming, finite differences, iterated running medians, least angle regression, regularization path following and coordinate descent. In the second paper, part II, we introduce novel PWC denoising methods, and comparisons between these methods performed on synthetic and real signals, showing that the new understanding of the problem gained in part I leads to new methods that have a useful role to play.
Resumo:
El presente trabajo consiste en dos partes diferenciadas: la principal de ellas (Cap tulos 1 y 2) est a dedicada a introducir estructura adicional en grupos que aparecen de manera natural en el contexto de la teor a de la forma. En la segunda parte (Cap tulo 3), se plantea c omo generalizar la teor a de espacios recubridores y, en particular, se propone una l nea de trabajo relacionada con la teor a de la forma. El punto de partida de esta tesis doctoral son los trabajos [25, 26, 68, 69, 70] en los que los autores introducen y utilizan algunas ultram etricas en el conjunto de los mor smos shape entre dos espacios topol ogicos punteados. En particular, si el dominio es (S1; 1); la construcci on realizada en [68] permite explicitar una ultram etrica en el grupo shape 1(X; x0) de un espacio m etrico compacto X; como ya fue observado en [69] y [80]. Si el espacio no es m etrico compacto, la construcci on nos lleva a utilizar el concepto de ultram etrica generalizada, en el sentido de Priess-Crampe y Ribenboim [78, 79]. En [7], D. K. Biss introduce la idea de topologizar el grupo fundamental de un espacio, de forma que la topolog a en 1(X; x0) sea una topolog a de grupo que permita detectar la (no) existencia de un recubridor universal para X: La forma de proceder sugerida es tomar en 1(X; x0)la toplog a cociente inducida por la topolog a compacto-abierta en el espacio de lazos (X; x0): Sin embargo, hay algunos errores en el art culo mencionado: en concreto, el error relacionado con el presente trabajo fue puesto de mani esto por P. Fabel en [33], mostrando que, en general, la operaci on de grupo en 1(X; x0)con la topolog a cociente no es continua. Utilizando un punto de vista similar, varios autores han tratado de dotar al grupo fundamental con una topolog a, de forma que 1(X; x0) sea un grupo topol ogico y la proyecci on q (X; x0){u100000} 1(X; x0)sea continua...
Resumo:
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.
Resumo:
The analysis of Macdonald for electrolytes is generalized to the case in which two groups of ions are present. We assume that the electrolyte can be considered as a dispersion of ions in a dielectric liquid, and that the ionic recombination can be neglected. We present the differential equations governing the ionic redistribution when the liquid is subjected to an external electric field, describing the simultaneous diffusion of the two groups of ions in the presence of their own space charge fields. We investigate the influence of the ions on the impedance spectroscopy of an electrolytic cell. In the analysis, we assume that each group of ions have equal mobility, the electrodes perfectly block and that the adsorption phenomena can be neglected. In this framework, it is shown that the real part of the electrical impedance of the cell has a frequency dependence presenting two plateaux, related to a type of ambipolar and free diffusion coefficients. The importance of the considered problem on the ionic characterization performed by means of the impedance spectroscopy technique was discussed. (c) 2008 American Institute of Physics.
Resumo:
In the last decade the Sznajd model has been successfully employed in modeling some properties and scale features of both proportional and majority elections. We propose a version of the Sznajd model with a generalized bounded confidence rule-a rule that limits the convincing capability of agents and that is essential to allow coexistence of opinions in the stationary state. With an appropriate choice of parameters it can be reduced to previous models. We solved this model both in a mean-field approach (for an arbitrary number of opinions) and numerically in a Barabaacutesi-Albert network (for three and four opinions), studying the transient and the possible stationary states. We built the phase portrait for the special cases of three and four opinions, defining the attractors and their basins of attraction. Through this analysis, we were able to understand and explain discrepancies between mean-field and simulation results obtained in previous works for the usual Sznajd model with bounded confidence and three opinions. Both the dynamical system approach and our generalized bounded confidence rule are quite general and we think it can be useful to the understanding of other similar models.
Resumo:
We consider a model of classical noncommutative particle in an external electromagnetic field. For this model, we prove the existence of generalized gauge transformations. Classical dynamics in Hamiltonian and Lagrangian form is discussed; in particular, the motion in the constant magnetic field is studied in detail. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3299296]