889 resultados para Gene-expression Profile
Resumo:
AIMS A non-invasive gene-expression profiling (GEP) test for rejection surveillance of heart transplant recipients originated in the USA. A European-based study, Cardiac Allograft Rejection Gene Expression Observational II Study (CARGO II), was conducted to further clinically validate the GEP test performance. METHODS AND RESULTS Blood samples for GEP testing (AlloMap(®), CareDx, Brisbane, CA, USA) were collected during post-transplant surveillance. The reference standard for rejection status was based on histopathology grading of tissue from endomyocardial biopsy. The area under the receiver operating characteristic curve (AUC-ROC), negative (NPVs), and positive predictive values (PPVs) for the GEP scores (range 0-39) were computed. Considering the GEP score of 34 as a cut-off (>6 months post-transplantation), 95.5% (381/399) of GEP tests were true negatives, 4.5% (18/399) were false negatives, 10.2% (6/59) were true positives, and 89.8% (53/59) were false positives. Based on 938 paired biopsies, the GEP test score AUC-ROC for distinguishing ≥3A rejection was 0.70 and 0.69 for ≥2-6 and >6 months post-transplantation, respectively. Depending on the chosen threshold score, the NPV and PPV range from 98.1 to 100% and 2.0 to 4.7%, respectively. CONCLUSION For ≥2-6 and >6 months post-transplantation, CARGO II GEP score performance (AUC-ROC = 0.70 and 0.69) is similar to the CARGO study results (AUC-ROC = 0.71 and 0.67). The low prevalence of ACR contributes to the high NPV and limited PPV of GEP testing. The choice of threshold score for practical use of GEP testing should consider overall clinical assessment of the patient's baseline risk for rejection.
Resumo:
BACKGROUND Preterm infants having immature lungs often require respiratory support, potentially leading to bronchopulmonary dysplasia (BPD). Conventional BPD rodent models based on mechanical ventilation (MV) present outcome measured at the end of the ventilation period. A reversible intubation and ventilation model in newborn rats recently allowed discovering that different sets of genes modified their expression related to time after MV. In a newborn rat model, the expression profile 48 h after MV was analyzed with gene arrays to detect potentially interesting candidates with an impact on BPD development. METHODS Rat pups were injected P4-5 with 2 mg/kg lipopolysaccharide (LPS). One day later, MV with 21 or 60% oxygen was applied during 6 h. Animals were sacrified 48 h after end of ventilation. Affymetrix gene arrays assessed the total gene expression profile in lung tissue. RESULTS In fully treated animals (LPS + MV + 60% O(2)) vs. controls, 271 genes changed expression significantly. All modified genes could be classified in six pathways: tissue remodeling/wound repair, immune system and inflammatory response, hematopoiesis, vasodilatation, and oxidative stress. Major alterations were found in the MMP and complement system. CONCLUSION MMPs and complement factors play a central role in several of the pathways identified and may represent interesting targets for BPD treatment/prevention.Bronchopulmonary dysplasia (BPD) is a chronic lung disease occurring in ~30% of preterm infants born less than 30 wk of gestation (1). Its main risk factors include lung immaturity due to preterm delivery, mechanical ventilation (MV), oxygen toxicity, chorioamnionitis, and sepsis. The main feature is an arrest of alveolar and capillary formation (2). Models trying to decipher genes involved in the pathophysiology of BPD are mainly based on MV and oxygen application to young mammals with immature lungs of different species (3). In newborn rodent models, analyses of lung structure and gene and protein expression are performed for practical reasons directly at the end of MV (4,5,6). However, later appearing changes of gene expression might also have an impact on lung development and the evolution towards BPD and cannot be discovered by such models. Recently, we developed a newborn rat model of MV using an atraumatic (orotracheal) intubation technique that allows the weaning of the newborn animal off anesthesia and MV, the extubation to spontaneous breathing, and therefore allows the evaluation of effects of MV after a ventilation-free period of recovery (7). Indeed, applying this concept of atraumatic intubation by direct laryngoscopy, we recently were able to show significant differences between gene expression changes appearing directly after MV compared to those measured after a ventilation-free interval of 48 h. Immediately after MV, inflammation-related genes showed a transitory modified expression, while another set of more structurally related genes changed their expression only after a delay of 2 d (7). Lung structure, analyzed by conventional 2D histology and also by 3D reconstruction using synchrotron x-ray tomographic microscopy revealed, 48 h after end of MV, a reduced complexity of lung architecture compared to the nonventilated rat lungs, similar to the typical findings in BPD. To extend these observations about late gene expression modifications, we performed with a similar model a full gene expression profile of lung tissue 48 h after the end of MV with either room air or 60% oxygen. Essentially, we measured changes in the expression of genes related to the MMPs and complement system which played a role in many of the six identified mostly affected pathways.
Resumo:
The role of macrophage iron in the physiopathology of atherosclerosis is an open question that needs to be clarified. In atherosclerotic lesions, recruited macrophages are submitted to cytokines and oxidized lipids which influence their phenotype. An important phenotypic population driven by oxidized phospholipids is the Mox macrophages which present unique biological properties but their iron phenotype is not well described.
Resumo:
HIV-associated neurocognitive disorders (HAND) is characterized by development of cognitive, behavioral and motor abnormalities, and occur in approximately 50% of HIV infected individuals. Our current understanding of HAND emanates mainly from HIV-1 subtype B (clade B), which is prevalent in USA and Western countries. However very little information is available on neuropathogenesis of HIV-1 subtype C (clade C) that exists in Sub-Saharan Africa and Asia. Therefore, studies to identify specific neuropathogenic mechanisms associated with HAND are worth pursuing to dissect the mechanisms underlying this modulation and to prevent HAND particularly in clade B infection. In this study, we have investigated 84 key human synaptic plasticity genes differential expression profile in clade B and clade C infected primary human astrocytes by using RT2 Profile PCR Array human Synaptic Plasticity kit. Among these, 31 and 21 synaptic genes were significantly (≥3 fold) down-regulated and 5 genes were significantly (≥3 fold) up-regulated in clade B and clade C infected cells, respectively compared to the uninfected control astrocytes. In flow-cytometry analysis, down-regulation of postsynaptic density and dendrite spine morphology regulatory proteins (ARC, NMDAR1 and GRM1) was confirmed in both clade B and C infected primary human astrocytes and SK-N-MC neuroblastoma cells. Further, spine density and dendrite morphology changes by confocal microscopic analysis indicates significantly decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC neuroblastoma cells compared to uninfected and clade C infected cells. We have also observed that, in clade B infected astrocytes, induction of apoptosis was significantly higher than in the clade C infected astrocytes. In conclusion, this study suggests that down-regulation of synaptic plasticity genes, decreased dendritic spine density and induction of apoptosis in astrocytes may contribute to the severe neuropathogenesis in clade B infection.
Resumo:
BACKGROUND Anaplasma phagocytophilum infects a wide variety of hosts and causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. Infection with A. phagocytophilum results in the modification of host gene expression and immune response. The objective of this research was to characterize gene expression in pigs (Sus scrofa) naturally and experimentally infected with A. phagocytophilum trying to identify mechanisms that help to explain low infection prevalence in this species. RESULTS For gene expression analysis in naturally infected pigs, microarray hybridization was used. The expression of differentially expressed immune response genes was analyzed by real-time RT-PCR in naturally and experimentally infected pigs. Results suggested that A. phagocytophilum infection affected cytoskeleton rearrangement and increased both innate and adaptive immune responses by up regulation of interleukin 1 receptor accessory protein-like 1 (IL1RAPL1), T-cell receptor alpha chain (TCR-alpha), thrombospondin 4 (TSP-4) and Gap junction protein alpha 1 (GJA1) genes. Higher serum levels of IL-1 beta, IL-8 and TNF-alpha in infected pigs when compared to controls supported data obtained at the mRNA level. CONCLUSIONS These results suggested that pigs are susceptible to A. phagocytophilum but control infection, particularly through activation of innate immune responses, phagocytosis and autophagy. This fact may account for the low infection prevalence detected in pigs in some regions and thus their low or no impact as a reservoir host for this pathogen. These results advanced our understanding of the molecular mechanisms at the host-pathogen interface and suggested a role for newly reported genes in the protection of pigs against A. phagocytophilum.
Resumo:
Microcystins are heptapeptide toxins produced by cyanobacteria. Microcystin-RR(MC-RR) is a common variant among the 80 variants identified so far. There have been many investigations documenting the toxic effects of microcystins on animals and higher plants, but little is known on the toxic effects of microcystins on algae, especially at molecular level. We studied the effects of MC-RR on gene expression profile of a few antioxidant enzymes and heat shock protein-70 (Hsp70) in Synechocystis sp. PCC6803. After two days post-exposure, a high dose toxin (5 mg/l, about 4.8 x 10(-3) mM) significantly increased expression levels of the genes gpx1, sodB, katG, acnB, gamma-TMTand dnaK2, while a relatively low dose toxin (1 mg/l, about 9.63 x 10(-4) mM) induced a moderate and slow increase of gene expression. Our results indicate that MC-RR could induce the oxidative stress in Synechocystis sp. PCC6803 and the increase in gene expression of antioxidant enzymes and Hsp70 might protect the organism from the oxidative damage. in addition, cell aggregation was observed during the early period of exposure, which might be a specific oxidative stress reaction to MC-RR. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Previous work has demonstrated the potential for peripheral blood (PB) gene expression profiling for the detection of disease or environmental exposures. METHODS AND FINDINGS: We have sought to determine the impact of several variables on the PB gene expression profile of an environmental exposure, ionizing radiation, and to determine the specificity of the PB signature of radiation versus other genotoxic stresses. Neither genotype differences nor the time of PB sampling caused any lessening of the accuracy of PB signatures to predict radiation exposure, but sex difference did influence the accuracy of the prediction of radiation exposure at the lowest level (50 cGy). A PB signature of sepsis was also generated and both the PB signature of radiation and the PB signature of sepsis were found to be 100% specific at distinguishing irradiated from septic animals. We also identified human PB signatures of radiation exposure and chemotherapy treatment which distinguished irradiated patients and chemotherapy-treated individuals within a heterogeneous population with accuracies of 90% and 81%, respectively. CONCLUSIONS: We conclude that PB gene expression profiles can be identified in mice and humans that are accurate in predicting medical conditions, are specific to each condition and remain highly accurate over time.
Resumo:
Background
Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties by gene expression profile. Lamb et al first proposed the Connectivity Map [Lamb et al (2006), Science 313, 1929–1935] to make successful connections among small molecules, genes, and diseases using genomic signatures.
Results
Here we have built on the principles of the Connectivity Map to present a simpler and more robust method for the construction of reference gene-expression profiles and for the connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with two randomly generated gene signatures and three experimentally derived gene signatures (for HDAC inhibitors, estrogens, and immunosuppressive drugs, respectively). Our testing with this method indicates that it achieves a higher level of specificity and sensitivity and so advances the original method.
Conclusion
The method presented here not only offers more principled statistical procedures for testing connections, but more importantly it provides effective safeguard against false connections at the same time achieving increased sensitivity. With its robust performance, the method has potential use in the drug development pipeline for the early recognition of pharmacological and toxicological properties in chemicals and new drug candidates, and also more broadly in other 'omics sciences.
Resumo:
CCN2/CTGF is an established effector of TGFß driven responses in diabetic nephropathy. We have identified an interaction between CCN2 and TGFß leading to altered phenotypic differentiation and inhibited cellular migration. Here we determine the gene expression profile associated with this phenotype and define a transcriptional basis for differential actin related gene expression and cytoskeletal function.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tumor response to antineoplastic drugs is not always predictable. This is also true for bladder carcinoma, a highly recurrent neoplasia. Currently, the combination of cisplatin and gemcitabine is well accepted as a standard protocol for treating bladder carcinoma. However, in some cases, this treatment protocol causes harmful side effects. Therefore, we investigated the roles of the genes TP53, RASSF1A (a tumor suppressor gene) and hMLH1 (a gene involved in the mismatch repair pathway) in cell susceptibility to cisplatin/gemcitabine treatment. Two bladder transitional carcinoma cell (TCC) lines, RT4 (wild-type TP53) and 5637 (mutated TP53), were used in this study. First, we evaluated whether the genotoxic potential of cisplatin/gemcitabine was dependent on TP53 status. Then, we evaluated whether the two antineoplastic drugs modulated RASSF1A and hMLH1 expression in the two cell lines. Increased DNA damage was observed in both cell lines after treatment with cisplatin or gemcitabine and with the two drugs simultaneously, as depicted by the comet assay. A lack of RASSF1A expression and hypermethylation of its promoter were observed before and after treatment in both cell lines. On the other hand, hMLH1 downregulation, unrelated to methylation status, was observed in RT4 cells after treatment with cisplatin or with cisplatin and gemcitabine simultaneously (wild-type TP53); in 5637 cells, hMLH1 was upregulated only after treatment with gemcitabine. In conclusion, the three treatment protocols were genotoxic, independent of TP53 status. However, cisplatin was the most effective, causing the highest level of DNA damage in both wild-type and mutated TP53 cells. Gemcitabine was the least genotoxic agent in both cell lines. Furthermore, no relationship was observed between the amount of DNA damage and the level of hMLH1 and RASSF1A expression. Therefore, other alternative pathways might be involved in cisplatin and gemcitabine genotoxicity in these two bladder cancer cell lines.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)