993 resultados para Gene splicing
Resumo:
Background: Exposure of cells to environmental stress conditions can lead to the interruption of several intracellular processes, in particular those performed by macromolecular complexes such as the spliceosome. Results: During nucleotide sequencing of cDNA libraries constructed using RNA isolated from B. emersonii cells submitted to heat shock and cadmium stress, a large number of ESTs with retained introns was observed. Among the 6,350 ESTs obtained through sequencing of stress cDNA libraries, 181 ESTs presented putative introns (2.9%), while sequencing of cDNA libraries from unstressed B. emersonii cells revealed only 0.2% of ESTs containing introns. These data indicate an enrichment of ESTs with introns in B. emersonii stress cDNA libraries. Among the 85 genes corresponding to the ESTs that retained introns, 19 showed more than one intron and three showed three introns, with intron length ranging from 55 to 333 nucleotides. Canonical splicing junctions were observed in most of these introns, junction sequences being very similar to those found in introns from genes previously characterized in B. emersonii, suggesting that inhibition of splicing during stress is apparently a random process. Confirming our observations, analyses of gpx3 and hsp70 mRNAs by Northern blot and S1 protection assays revealed a strong inhibition of intron splicing in cells submitted to cadmium stress. Conclusion: In conclusion, data indicate that environmental stresses, particularly cadmium treatment, inhibit intron processing in B. emersonii, revealing a new adaptive response to cellular exposure to this heavy metal.
Resumo:
The hydroxymethylbilane synthase (HMBS) mRNAs from 44 control individuals and 30 patients suffering from acute intermittent porphyria (AIP), were screened for length differences by reverse transcriptase polymerase chain reaction (RT-PCR) and any abnormalities were characterized by direct sequencing. Examination of the mRNAs extracted from the peripheral blood lymphocytes of the samples revealed varying degrees of alternative splicing, involving the removal of exons 3 and 12. Approximately 10-50% of the mRNA molecules were affected, despite the absence of genomic splice site mutations or any major deviance from consensus splice sequence values. The preliminary data obtained from this study suggest that this event is a normal occurrence in peripheral blood lymphocytes, and may not be associated with the molecular pathology responsible for AIP. (C) 1998 Academic Press Limited.
Resumo:
Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silica analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.
Resumo:
The mouse hnRNP A2/B1/B0 gene has been cloned using a PCR-based strategy and sequenced. Analysis of this sequence showed that the gene organization closely follows that of the human orthologue with 12 exons and 11 introns. The hnRNP A2/B1/B0 gene gives rise to four splice variants through alternative splicing of exons 2 and 9. RT-PCR assays indicated that all splice variants were expressed in mouse brain, skin, and stomach tissues of varying ages, although their ratios to one another varied with age and tissue type. We also identified a small subset of all polyadenylated splice variants that included intron 11, which shows 94% sequence identity between human and mouse. Several processed pseudogenes were identified in the mouse genome. A search of the mouse genome databases located five pseudogenes, four of. which are presumed to be non-functional because of the presence of premature stop codons, large deletions or rearrangements within the coding region. The fifth, which possesses putative promoter elements and has a coding sequence identical to that of the hnRNP A2 mRNA, variant, may be functional. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The vertebrate Slit gene family currently consists of three members;Slit1,Slit2 and Slit3. Each gene encodes a protein containing multiple epidermal growth factor and leucine rich repeat motifs, which are likely to have importance in cell-cell interactions. In this study, we sought to fully define and characterise the vertebrate Slit gene family. Using long distance PCR coupled with in silico mapping, we determined the genomic structure of all three Slit genes in mouse and man. Analysis of EST and genomic databases revealed no evidence of further Slit family members in either organism. All three Slit genes were encoded by 36 (Slit3) or 37 (Slit1 and Slit2) exons covering at least 143 kb or 183 kb of mouse or human genomic DNA respectively. Two additional potential leucine-rich repeat encoding exons were identified within intron 12 of Slit2. These could be inserted in frame, suggesting that alternate splicing may occur in Slit2 A search for STS sequences within human Slit3 anchored this gene to D5S2075 at the 5' end (exon 4) and SGC32449 within the 3' UTR, suggesting that Slit3 may cover greater than 693 kb. The genomic structure of all Slit genes demonstrated considerable modularity in the placement of exon-intron boundaries such that individual leucine-rich repeat motifs were encoded by individual 72 by exons. This further implies the potential generation of multiple Slit protein isoforms varying in their number of repeat units. cDNA library screening and EST database searching verified that such alternate splicing does occur.
Resumo:
Conventional kinesin is a microtubule-based molecular motor involved in the transport of membranous and non-membranous cargoes. The kinesin holoenzyme exists as a heterotetramer, consisting of two heavy chain and two light chain subunits. It is thought that one function of the light chains is to interact with the cargo. Alternative splicing of kinesin light chain pre-mRNA has been observed in lower organisms, although evidence for alternative splicing of the human gene has not been reported. We have identified 19 variants of the human KNS2 gene (KLC1) that are generated by alternative splicing of downstream exons, but calculate that KNS2 has the potential to produce 285919 spliceforms. Corresponding spliceforms of the mouse KLC1 gene were also identified. The alternative exons are all located 3' of exon 12 and the novel spliceforms produce both alternative carboxy termini and alternative 3' untranslated regions. The observation of multiple light chain isoforms is consistent with their proposed role in specific cargo attachment.
Resumo:
Thesis presented to obtain the Ph.D. degree in Biology (Molecular Genetics), by the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia.
Resumo:
Dissertation presented to obtain the Ph.D degree in Molecular Biology
Resumo:
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.
Resumo:
Report for the scientific sojourn carried out at the University of St. Andrews, United Kingdom, from November 2007 until January 2008. Therapeutic transgene expression is a valuable strategy to counteract the limitations associated with oncolytic adenoviruses. Late phase expression is desirable to avoid early cell death for proper virus production. In this 3 months-collaboration, we have constructed a late expression system based on ribosome skipping downstream fiber protein and compared it with a splicing-based method of late gene expression. Despite expressing high amounts of the transgene when utilizing the ribosome skipping-system, flow cytomety assays indicate a delayed transgene-expression kinetics compared with the splicing-based one. Furthermore, when using the ribosome skipping system not only fiber protein expression is more altered but also viral production. These results suggest splicing-based expression strategy as a more suitable system for expression of transgenes late in the viral life cycle of an oncolytic adenovirus.
Resumo:
PIKfyve is a kinase encoded by pip5k3 involved in phosphatidylinositols (PdtIns) pathways. These lipids building cell membranes have structural functions and are involved in complex intracellular regulations. Mutations in human PIP5K3 are associated with François-Neetens mouchetée fleck corneal dystrophy [Li, S., Tiab, L., Jiao, X., Munier, F.L., Zografos, L., Frueh, B.E., Sergeev, Y., Smith, J., Rubin, B., Meallet, M.A., Forster, R.K., Hejtmancik, J.F., Schorderet, D.F., 2005. Mutations in PIP5K3 are associated with François-Neetens mouchetee fleck corneal dystrophy. Am. J. Hum. Genet. 77, 54-63]. We cloned the zebrafish pip5k3 and report its molecular characterization and expression pattern in adult fish as well as during development. The zebrafish PIKfyve was 70% similar to the human homologue. The gene encompassed 42 exons and presented four alternatively spliced variants. It had a widespread expression in the adult organs and was localized in specific cell types in the eye as the cornea, lens, ganglion cell layer, inner nuclear layer and outer limiting membrane. Pip5k3 transcripts were detected in early cleavage stage embryos. Then it was uniformly expressed at 10 somites, 18 somites and 24 hpf. Its expression was then restricted to the head region at 48 hpf, 72 hpf and 5 dpf and partial expression was found in somites at 72 hpf and 5 dpf. In situ on eye sections at 3 dpf showed a staining mainly in lens, outer limiting membrane, inner nuclear layer and ganglion cell layer. A similar expression pattern was found in the eye at 5 dpf. A temporal regulation of the spliced variants was observed at 1, 3 and 5 dpf and they were also found in the adult eye.
Resumo:
The gene encoding the cAMP-responsive transcription factor CREB consists of multiple small exons some of which undergo alternative RNA splicing. We describe the finding of a novel transcript of the CREB gene expressed at high levels in the germ cells of the rat testis. The transcript contains an alternatively spliced exon inserted within the sequence encoding the transcriptional transactivation domain of CREB and this exon contains multiple in-frame stop codons. Furthermore, the exon is conserved in both rat and human genes (75% nucleotide identity). Although the function(s) of this RNA or the truncated CREB protein predicted to result from the translation of this unusual transcript is unknown, the high level of expression in the testicular germ cells and remarkable conservation of sequences in rat and human suggests that it may have a unique biological function in these cells.
Resumo:
We analyze here the relation between alternative splicing and gene duplication in light of recent genomic data, with a focus on the human genome. We show that the previously reported negative correlation between level of alternative splicing and family size no longer holds true. We clarify this pattern and show that it is sufficiently explained by two factors. First, genes progressively gain new splice variants with time. The gain is consistent with a selectively relaxed regime, until purifying selection slows it down as aging genes accumulate a large number of variants. Second, we show that duplication does not lead to a loss of splice forms, but rather that genes with low levels of alternative splicing tend to duplicate more frequently. This leads us to reconsider the role of alternative splicing in duplicate retention.
Resumo:
Since the discovery that genes are split into intron and exons, the studies of the mechanisms involved in splicing pointed to presence of consensus signals in an attempt to generalize the process for all living cells. However, as discussed in the present review, splicing is a theme full of variations. The trans-splicing of pre-mRNAs, the joining of exons from distinct transcripts, is one of these variations with broad distribution in the phylogenetic tree. The biological meaning of this phenomenon is discussed encompassing reactions resembling a possible noise to mechanisms of gene expression regulation. All of them however, can contribute to the generation of life diversity.
Resumo:
As acute nonlymphocytic leukemia (ANLL) with inv(16) (p13q22) or t(16;16)(p13;q22) has been shown to result from the fusion of transcription factor subunit core binding factor (CBFB) to a myosin heavy chain (MYH11), we sought to design methods to detect this rearrangement using reverse transcriptase-polymerase chain reaction (RT-PCR). In all of 27 inv(16)(p13q22) and four t(16;16)(p13;q22) cases tested, a chimeric CBFB-MYH11 transcript coding for an in-frame fusion protein was detected. In a more extensive RT-PCR analysis with different primer pairs, we detected a second new chimeric CBFB-MYH11 transcript in 10 of 11 patients tested. The CBFB-MYH11 reading frame of the second transcript was maintained in one patient but not in the others. We show that the different CBFB-MYH11 transcripts in one patient arise from alternative splicing. Translation of the transcript in which the CBFB-MYH11 reading frame is not maintained leads to a slightly truncated CBFB protein.