923 resultados para Gaussian diffraction model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

以菲涅尔-基尔霍夫衍射理论为基础,建立了超分辨近场结构中Bubble微结构对高斯光束的衍射模型.分析了PtOx型超分辨近场结构(PtOx-Type-Super-RENS)中Bubble微结构的远场光学特性.结果表明,设计的Bubble微结构形成过程的简化模型可基本反映超分辨近场结构中掩膜结构在激光作用下的结构变化过程,说明了高斯衍射模型是研究薄膜微结构变化的一种有效方法.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comprehensive two-dimensional gas chromatography (GC x GC) has attracted much attention for the analys is of complex samples. Even with a large peak capacity in GC x GC, peak overlapping is often met. In this paper, a new method was developed to resolve overlapped peaks based on the mass conservation and the exponentially modified Gaussian (EMG) model. Linear relationships between the calculated sigma, tau of primary peaks with the corresponding retention time (t(R)) were obtained, and the correlation coefficients were over 0.99. Based on such relationships, the elution profile of each compound in overlapped peaks could be simulated, even for the peak never separated on the second-dimension. The proposed method has proven to offer more accurate peak area than the general data processing method. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a robust stochastic model for the incorporation of natural features within data fusion algorithms. The representation combines Isomap, a non-linear manifold learning algorithm, with Expectation Maximization, a statistical learning scheme. The representation is computed offline and results in a non-linear, non-Gaussian likelihood model relating visual observations such as color and texture to the underlying visual states. The likelihood model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The likelihoods are expressed as a Gaussian Mixture Model so as to permit convenient integration within existing nonlinear filtering algorithms. The resulting compactness of the representation is especially suitable to decentralized sensor networks. Real visual data consisting of natural imagery acquired from an Unmanned Aerial Vehicle is used to demonstrate the versatility of the feature representation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources are limited. A method of combining vector quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian mixture model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system perfomance between the VQ Gaussian based technique and GMMs

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recently discovered twist phase is studied in the context of the full ten-parameter family of partially coherent general anisotropic Gaussian Schell-model beams. It is shown that the nonnegativity requirement on the cross-spectral density of the beam demands that the strength of the twist phase be bounded from above by the inverse of the transverse coherence area of the beam. The twist phase as a two-point function is shown to have the structure of the generalized Huygens kernel or Green's function of a first-order system. The ray-transfer matrix of this system is exhibited. Wolf-type coherent-mode decomposition of the twist phase is carried out. Imposition of the twist phase on an otherwise untwisted beam is shown to result in a linear transformation in the ray phase space of the Wigner distribution. Though this transformation preserves the four-dimensional phase-space volume, it is not symplectic and hence it can, when impressed on a Wigner distribution, push it out of the convex set of all bona fide Wigner distributions unless the original Wigner distribution was sufficiently deep into the interior of the set.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We develop a Gaussian mixture model (GMM) based vector quantization (VQ) method for coding wideband speech line spectrum frequency (LSF) parameters at low complexity. The PDF of LSF source vector is modeled using the Gaussian mixture (GM) density with higher number of uncorrelated Gaussian mixtures and an optimum scalar quantizer (SQ) is designed for each Gaussian mixture. The reduction of quantization complexity is achieved using the relevant subset of available optimum SQs. For an input vector, the subset of quantizers is chosen using nearest neighbor criteria. The developed method is compared with the recent VQ methods and shown to provide high quality rate-distortion (R/D) performance at lower complexity. In addition, the developed method also provides the advantages of bitrate scalability and rate-independent complexity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We address the problem of robust formant tracking in continuous speech in the presence of additive noise. We propose a new approach based on mixture modeling of the formant contours. Our approach consists of two main steps: (i) Computation of a pyknogram based on multiband amplitude-modulation/frequency-modulation (AM/FM) decomposition of the input speech; and (ii) Statistical modeling of the pyknogram using mixture models. We experiment with both Gaussian mixture model (GMM) and Student's-t mixture model (tMM) and show that the latter is robust with respect to handling outliers in the pyknogram data, parameter selection, accuracy, and smoothness of the estimated formant contours. Experimental results on simulated data as well as noisy speech data show that the proposed tMM-based approach is also robust to additive noise. We present performance comparisons with a recently developed adaptive filterbank technique proposed in the literature and the classical Burg's spectral estimator technique, which show that the proposed technique is more robust to noise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation consists of two parts. The first part presents an explicit procedure for applying multi-Regge theory to production processes. As an illustrative example, the case of three body final states is developed in detail, both with respect to kinematics and multi-Regge dynamics. Next, the experimental consistency of the multi-Regge hypothesis is tested in a specific high energy reaction; the hypothesis is shown to provide a good qualitative fit to the data. In addition, the results demonstrate a severe suppression of double Pomeranchon exchange, and show the coupling of two "Reggeons" to an external particle to be strongly damped as the particle's mass increases. Finally, with the use of two body Regge parameters, order of magnitude estimates of the multi-Regge cross section for various reactions are given.

The second part presents a diffraction model for high energy proton-proton scattering. This model developed by Chou and Yang assumes high energy elastic scattering results from absorption of the incident wave into the many available inelastic channels, with the absorption proportional to the amount of interpenetrating hadronic matter. The assumption that the hadronic matter distribution is proportional to the charge distribution relates the scattering amplitude for pp scattering to the proton form factor. The Chou-Yang model with the empirical proton form factor as input is then applied to calculate a high energy, fixed momentum transfer limit for the scattering cross section, This limiting cross section exhibits the same "dip" or "break" structure indicated in present experiments, but falls significantly below them in magnitude. Finally, possible spin dependence is introduced through a weak spin-orbit type term which gives rather good agreement with pp polarization data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a novel filtering algorithm for tracking multiple clusters of coordinated objects. Based on a Markov chain Monte Carlo (MCMC) mechanism, the new algorithm propagates a discrete approximation of the underlying filtering density. A dynamic Gaussian mixture model is utilized for representing the time-varying clustering structure. This involves point process formulations of typical behavioral moves such as birth and death of clusters as well as merging and splitting. For handling complex, possibly large scale scenarios, the sampling efficiency of the basic MCMC scheme is enhanced via the use of a Metropolis within Gibbs particle refinement step. As the proposed methodology essentially involves random set representations, a new type of estimator, termed the probability hypothesis density surface (PHDS), is derived for computing point estimates. It is further proved that this estimator is optimal in the sense of the mean relative entropy. Finally, the algorithm's performance is assessed and demonstrated in both synthetic and realistic tracking scenarios. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the Student-t process as an alternative to the Gaussian process as a non-parametric prior over functions. We derive closed form expressions for the marginal likelihood and predictive distribution of a Student-t process, by integrating away an inverse Wishart process prior over the co-variance kernel of a Gaussian process model. We show surprising equivalences between different hierarchical Gaussian process models leading to Student-t processes, and derive a new sampling scheme for the inverse Wishart process, which helps elucidate these equivalences. Overall, we show that a Student-t process can retain the attractive properties of a Gaussian process - a nonparamet-ric representation, analytic marginal and predictive distributions, and easy model selection through covariance kernels - but has enhanced flexibility, and predictive covariances that, unlike a Gaussian process, explicitly depend on the values of training observations. We verify empirically that a Student-t process is especially useful in situations where there are changes in covariance structure, or in applications such as Bayesian optimization, where accurate predictive covariances are critical for good performance. These advantages come at no additional computational cost over Gaussian processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates sub-integer implementations of the adaptive Gaussian mixture model (GMM) for background/foreground segmentation to allow the deployment of the method on low cost/low power processors that lack Floating Point Unit (FPU). We propose two novel integer computer arithmetic techniques to update Gaussian parameters. Specifically, the mean value and the variance of each Gaussian are updated by a redefined and generalised "round'' operation that emulates the original updating rules for a large set of learning rates. Weights are represented by counters that are updated following stochastic rules to allow a wider range of learning rates and the weight trend is approximated by a line or a staircase. We demonstrate that the memory footprint and computational cost of GMM are significantly reduced, without significantly affecting the performance of background/foreground segmentation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the variability of wind power, it is imperative to accurately and timely forecast the wind generation to enhance the flexibility and reliability of the operation and control of real-time power. Special events such as ramps, spikes are hard to predict with traditional methods using solely recently measured data. In this paper, a new Gaussian Process model with hybrid training data taken from both the local time and historic dataset is proposed and applied to make short-term predictions from 10 minutes to one hour ahead. A key idea is that the similar pattern data in history are properly selected and embedded in Gaussian Process model to make predictions. The results of the proposed algorithms are compared to those of standard Gaussian Process model and the persistence model. It is shown that the proposed method not only reduces magnitude error but also phase error.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have developed a new projector model specifically tailored for fast list-mode tomographic reconstructions in Positron emission tomography (PET) scanners with parallel planar detectors. The model provides an accurate estimation of the probability distribution of coincidence events defined by pairs of scintillating crystals. This distribution is parameterized with 2D elliptical Gaussian functions defined in planes perpendicular to the main axis of the tube of response (TOR). The parameters of these Gaussian functions have been obtained by fitting Monte Carlo simulations that include positron range, acolinearity of gamma rays, as well as detector attenuation and scatter effects. The proposed model has been applied efficiently to list-mode reconstruction algorithms. Evaluation with Monte Carlo simulations over a rotating high resolution PET scanner indicates that this model allows to obtain better recovery to noise ratio in OSEM (ordered-subsets, expectation-maximization) reconstruction, if compared to list-mode reconstruction with symmetric circular Gaussian TOR model, and histogram-based OSEM with precalculated system matrix using Monte Carlo simulated models and symmetries.