999 resultados para Galerkin methods
Resumo:
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the hydrodynamic stability problem associated with the incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the eigenvalue problem in channel and pipe geometries. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to eigenvalue/stability problems. The underlying analysis consists of constructing both a dual eigenvalue problem and a dual problem for the original base solution. In this way, errors stemming from both the numerical approximation of the original nonlinear flow problem, as well as the underlying linear eigenvalue problem are correctly controlled. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
Resumo:
We develop the energy norm a-posteriori error estimation for hp-version discontinuous Galerkin (DG) discretizations of elliptic boundary-value problems on 1-irregularly, isotropically refined affine hexahedral meshes in three dimensions. We derive a reliable and efficient indicator for the errors measured in terms of the natural energy norm. The ratio of the efficiency and reliability constants is independent of the local mesh sizes and weakly depending on the polynomial degrees. In our analysis we make use of an hp-version averaging operator in three dimensions, which we explicitly construct and analyze. We use our error indicator in an hp-adaptive refinement algorithm and illustrate its practical performance in a series of numerical examples. Our numerical results indicate that exponential rates of convergence are achieved for problems with smooth solutions, as well as for problems with isotropic corner singularities.
Resumo:
In this work a p-adaptation (modification of the polynomial order) strategy based on the minimization of the truncation error is developed for high order discontinuous Galerkin methods. The truncation error is approximated by means of a truncation error estimation procedure and enables the identification of mesh regions that require adaptation. Three truncation error estimation approaches are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. Fine solutions, which are obtained by enriching the polynomial order, are required to solve the numerical problem with adequate accuracy. For the three truncation error estimation methods the former needs time converged solutions, while the last two rely on non-converged solutions, which lead to faster computations. Based on these truncation error estimation methods, algorithms for mesh adaptation were designed and tested. Firstly, an isotropic adaptation approach is presented, which leads to equally distributed polynomial orders in different coordinate directions. This first implementation is improved by incorporating a method to extrapolate the truncation error. This results in a significant reduction of computational cost. Secondly, the employed high order method permits the spatial decoupling of the estimated errors and enables anisotropic p-adaptation. The incorporation of anisotropic features leads to meshes with different polynomial orders in the different coordinate directions such that flow-features related to the geometry are resolved in a better manner. These adaptations result in a significant reduction of degrees of freedom and computational cost, while the amount of improvement depends on the test-case. Finally, this anisotropic approach is extended by using error extrapolation which leads to an even higher reduction in computational cost. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier-Stokes equations. The main result is that the two quasi-a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of a factor of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively. RESUMEN En este trabajo se ha desarrollado una estrategia de adaptación-p (modificación del orden polinómico) para métodos Galerkin discontinuo de alto orden basada en la minimización del error de truncación. El error de truncación se estima utilizando el método tau-estimation. El estimador permite la identificación de zonas de la malla que requieren adaptación. Se distinguen tres técnicas de estimación: a posteriori, quasi a priori y quasi a priori con correción. Todas las estrategias requieren una solución obtenida en una malla fina, la cual es obtenida aumentando de manera uniforme el orden polinómico. Sin embargo, mientras que el primero requiere que esta solución esté convergida temporalmente, el resto utiliza soluciones no convergidas, lo que se traduce en un menor coste computacional. En este trabajo se han diseñado y probado algoritmos de adaptación de malla basados en métodos tau-estimation. En primer lugar, se presenta un algoritmo de adaptacin isótropo, que conduce a discretizaciones con el mismo orden polinómico en todas las direcciones espaciales. Esta primera implementación se mejora incluyendo un método para extrapolar el error de truncación. Esto resulta en una reducción significativa del coste computacional. En segundo lugar, el método de alto orden permite el desacoplamiento espacial de los errores estimados, permitiendo la adaptación anisotropica. Las mallas obtenidas mediante esta técnica tienen distintos órdenes polinómicos en cada una de las direcciones espaciales. La malla final tiene una distribución óptima de órdenes polinómicos, los cuales guardan relación con las características del flujo que, a su vez, depenen de la geometría. Estas técnicas de adaptación reducen de manera significativa los grados de libertad y el coste computacional. Por último, esta aproximación anisotropica se extiende usando extrapolación del error de truncación, lo que conlleva un coste computational aún menor. Las estrategias se verifican y se comparan en téminors de precisión y coste computacional utilizando las ecuaciones de Euler y Navier Stokes. Los dos métodos quasi a priori consiguen una reducción significativa del coste computacional en comparación con aumento uniforme del orden polinómico. En concreto, para una capa límite viscosa, obtenemos una mejora en tiempo de computación de 6.6 y 7.6 respectivamente, para las aproximaciones quasi-a priori y quasi-a priori con corrección.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C-0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.
Resumo:
We present the results of a computational study of the post-processed Galerkin methods put forward by Garcia-Archilla et al. applied to the non-linear von Karman equations governing the dynamic response of a thin cylindrical panel periodically forced by a transverse point load. We spatially discretize the shell using finite differences to produce a large system of ordinary differential equations (ODEs). By analogy with spectral non-linear Galerkin methods we split this large system into a 'slowly' contracting subsystem and a 'quickly' contracting subsystem. We then compare the accuracy and efficiency of (i) ignoring the dynamics of the 'quick' system (analogous to a traditional spectral Galerkin truncation and sometimes referred to as 'subspace dynamics' in the finite element community when applied to numerical eigenvectors), (ii) slaving the dynamics of the quick system to the slow system during numerical integration (analogous to a non-linear Galerkin method), and (iii) ignoring the influence of the dynamics of the quick system on the evolution of the slow system until we require some output, when we 'lift' the variables from the slow system to the quick using the same slaving rule as in (ii). This corresponds to the post-processing of Garcia-Archilla et al. We find that method (iii) produces essentially the same accuracy as method (ii) but requires only the computational power of method (i) and is thus more efficient than either. In contrast with spectral methods, this type of finite-difference technique can be applied to irregularly shaped domains. We feel that post-processing of this form is a valuable method that can be implemented in computational schemes for a wide variety of partial differential equations (PDEs) of practical importance.
Resumo:
We consider numerical methods for the compressible time dependent Navier-Stokes equations, discussing the spatial discretization by Finite Volume and Discontinuous Galerkin methods, the time integration by time adaptive implicit Runge-Kutta and Rosenbrock methods and the solution of the appearing nonlinear and linear equations systems by preconditioned Jacobian-Free Newton-Krylov, as well as Multigrid methods. As applications, thermal Fluid structure interaction and other unsteady flow problems are considered. The text is aimed at both mathematicians and engineers.
Resumo:
One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.
Resumo:
In dieser Arbeit wird ein neuer Dynamikkern entwickelt und in das bestehendernnumerische Wettervorhersagesystem COSMO integriert. Für die räumlichernDiskretisierung werden diskontinuierliche Galerkin-Verfahren (DG-Verfahren)rnverwendet, für die zeitliche Runge-Kutta-Verfahren. Hierdurch ist ein Verfahrenrnhoher Ordnung einfach zu realisieren und es sind lokale Erhaltungseigenschaftenrnder prognostischen Variablen gegeben. Der hier entwickelte Dynamikkern verwendetrngeländefolgende Koordinaten in Erhaltungsform für die Orographiemodellierung undrnkoppelt das DG-Verfahren mit einem Kessler-Schema für warmen Niederschlag. Dabeirnwird die Fallgeschwindigkeit des Regens, nicht wie üblich implizit imrnKessler-Schema diskretisiert, sondern explizit im Dynamikkern. Hierdurch sindrndie Zeitschritte der Parametrisierung für die Phasenumwandlung des Wassers undrnfür die Dynamik vollständig entkoppelt, wodurch auch sehr große Zeitschritte fürrndie Parametrisierung verwendet werden können. Die Kopplung ist sowohl fürrnOperatoraufteilung, als auch für Prozessaufteilung realisiert.rnrnAnhand idealisierter Testfälle werden die Konvergenz und die globalenrnErhaltungseigenschaften des neu entwickelten Dynamikkerns validiert. Die Massernwird bis auf Maschinengenauigkeit global erhalten. Mittels Bergüberströmungenrnwird die Orographiemodellierung validiert. Die verwendete Kombination ausrnDG-Verfahren und geländefolgenden Koordinaten ermöglicht die Behandlung vonrnsteileren Bergen, als dies mit dem auf Finite-Differenzenverfahren-basierendenrnDynamikkern von COSMO möglich ist. Es wird gezeigt, wann die vollernTensorproduktbasis und wann die Minimalbasis vorteilhaft ist. Die Größe desrnEinflusses auf das Simulationsergebnis der Verfahrensordnung, desrnParametrisierungszeitschritts und der Aufteilungsstrategie wirdrnuntersucht. Zuletzt wird gezeigt dass bei gleichem Zeitschritt die DG-Verfahrenrnaufgrund der besseren Skalierbarkeit in der Laufzeit konkurrenzfähig zurnFinite-Differenzenverfahren sind.
Resumo:
This paper is concerned with the discontinuous Galerkin approximation of the Maxwell eigenproblem. After reviewing the theory developed in [5], we present a set of numerical experiments which both validate the theory, and provide further insight regarding the practical performance of discontinuous Galerkin methods, particularly in the case when non-conforming meshes, characterized by the presence of hanging nodes, are employed.
Resumo:
A hybrid method for the incompressible Navier-Stokes equations is presented. The method inherits the attractive stabilizing mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. Using continuous Lagrange multiplier spaces to enforce flux continuity across cell facets, the number of global degrees of freedom is the same as for a continuous Galerkin method on the same mesh. Different from our earlier investigations on the approach for the Navier-Stokes equations, the pressure field in this work is discontinuous across cell boundaries. It is shown that this leads to very good local mass conservation and, for an appropriate choice of finite element spaces, momentum conservation. Also, a new form of the momentum transport terms for the method is constructed such that global energy stability is guaranteed, even in the absence of a pointwise solenoidal velocity field. Mass conservation, momentum conservation, and global energy stability are proved for the time-continuous case and for a fully discrete scheme. The presented analysis results are supported by a range of numerical simulations. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
We give an a posteriori analysis of a semidiscrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics, which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (2014, SIAM J. Math. Anal., 46, 3518–3539). This framework allows energy-type arguments to be applied to continuous functions. Since we advocate the use of discontinuous Galerkin methods we make use of two families of reconstructions, one set of discrete reconstructions and a set of elliptic reconstructions to apply the reduced relative entropy framework in this setting.
Resumo:
This paper presents a methodology for the placement and sizing evaluation of distributed generation (DG) in electric power systems. The candidate locations for DG placement are identified on the bases of Locational Marginal Prices (LMP's) obtained from an optimal power flow solution. The problem is formulated for two different objectives: social welfare maximization and profit maximization. For each DG unit an optimal placement is identified for each of the objectives.
Resumo:
Distribution networks paradigm is changing currently requiring improved methodologies and tools for network analysis and planning. A relevant issue is analyzing the impact of the Distributed Generation penetration in passive networks considering different operation scenarios. Studying DG optimal siting and sizing the planner can identify the network behavior in presence of DG. Many approaches for the optimal DG allocation problem successfully used multi-objective optimization techniques. So this paper contributes to the fundamental stage of multi-objective optimization of finding the Pareto optimal solutions set. It is proposed the application of a Multi-objective Tabu Search and it was verified a better performance comparing to the NSGA-II method. © 2009 IEEE.
Resumo:
A bilevel programming approach for the optimal contract pricing of distributed generation (DG) in distribution networks is presented. The outer optimization problem corresponds to the owner of the DG who must decide the contract price that would maximize his profits. The inner optimization problem corresponds to the distribution company (DisCo), which procures the minimization of the payments incurred in attending the expected demand while satisfying network constraints. The meet the expected demand the DisCo can purchase energy either form the transmission network through the substations or form the DG units within its network. The inner optimization problem is substituted by its Karush- Kuhn-Tucker optimality conditions, turning the bilevel programming problem into an equivalent single-level nonlinear programming problem which is solved using commercially available software. © 2010 IEEE.