997 resultados para GATE CONTROL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The water time constant and mechanical time constant greatly influences the power and speed oscillations of hydro-turbine-generator unit. This paper discusses the turbine power transients in response to different nature and changes in the gate position. The work presented here analyses the characteristics of hydraulic system with an emphasis on changes in the above time constants. The simulation study is based on mathematical first-, second-, third- and fourth-order transfer function models. The study is further extended to identify discrete time-domain models and their characteristic representation without noise and with noise content of 10 & 20 dB signal-to-noise ratio (SNR). The use of self-tuned control approach in minimising the speed deviation under plant parameter changes and disturbances is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare three proposals for nondeterministic control-sign gates implemented using linear optics and conditional measurements with nonideal ancilla mode production and detection. The simplified Knill-Laflamme-Milburn gate [Ralph , Phys. Rev. A 65, 012314 (2001)] appears to be the most resilient under these conditions. We also find that the operation of this gate can be improved by adjusting the beam splitter ratios to compensate to some extent for the effects of the imperfect ancilla.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove upper and lower bounds relating the quantum gate complexity of a unitary operation, U, to the optimal control cost associated to the synthesis of U. These bounds apply for any optimal control problem, and can be used to show that the quantum gate complexity is essentially equivalent to the optimal control cost for a wide range of problems, including time-optimal control and finding minimal distances on certain Riemannian, sub-Riemannian, and Finslerian manifolds. These results generalize the results of [Nielsen, Dowling, Gu, and Doherty, Science 311, 1133 (2006)], which showed that the gate complexity can be related to distances on a Riemannian manifold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclooxygenase 2 (COX2), a key regulatory enzyme of the prostaglandin/eicosanoid pathway, is an important target for anti-inflammatory therapy. It is highly induced by pro-inflammatory cytokines in a Nuclear factor kappa B (NFκB)-dependent manner. However, the mechanisms determining the amplitude and dynamics of this important pro-inflammatory event are poorly understood. Furthermore, there is significant difference between human and mouse COX2 expression in response to the inflammatory stimulus tumor necrosis factor alpha (TNFα). Here, we report the presence of a molecular logic AND gate composed of two NFκB response elements (NREs) which controls the expression of human COX2 in a switch-like manner. Combining quantitative kinetic modeling and thermostatistical analysis followed by experimental validation in iterative cycles, we show that the human COX2 expression machinery regulated by NFκB displays features of a logic AND gate. We propose that this provides a digital, noise-filtering mechanism for a tighter control of expression in response to TNFα, such that a threshold level of NFκB activation is required before the promoter becomes active and initiates transcription. This NFκB-regulated AND gate is absent in the mouse COX2 promoter, most likely contributing to its differential graded response in promoter activity and protein expression to TNFα. Our data suggest that the NFκB-regulated AND gate acts as a novel mechanism for controlling the expression of human COX2 to TNFα, and its absence in the mouse COX2 provides the foundation for further studies on understanding species-specific differential gene regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes a collection of studies into the electrical response of a III-V MOS stack comprising metal/GaGdO/GaAs layers as a function of fabrication process variables and the findings of those studies. As a result of this work, areas of improvement in the gate process module of a III-V heterostructure MOSFET were identified. Compared to traditional bulk silicon MOSFET design, one featuring a III-V channel heterostructure with a high-dielectric-constant oxide as the gate insulator provides numerous benefits, for example: the insulator can be made thicker for the same capacitance, the operating voltage can be made lower for the same current output, and improved output characteristics can be achieved without reducing the channel length further. It is known that transistors composed of III-V materials are most susceptible to damage induced by radiation and plasma processing. These devices utilise sub-10 nm gate dielectric films, which are prone to contamination, degradation and damage. Therefore, throughout the course of this work, process damage and contamination issues, as well as various techniques to mitigate or prevent those have been investigated through comparative studies of III-V MOS capacitors and transistors comprising various forms of metal gates, various thicknesses of GaGdO dielectric, and a number of GaAs-based semiconductor layer structures. Transistors which were fabricated before this work commenced, showed problems with threshold voltage control. Specifically, MOSFETs designed for normally-off (VTH > 0) operation exhibited below-zero threshold voltages. With the results obtained during this work, it was possible to gain an understanding of why the transistor threshold voltage shifts as the gate length decreases and of what pulls the threshold voltage downwards preventing normally-off device operation. Two main culprits for the negative VTH shift were found. The first was radiation damage induced by the gate metal deposition process, which can be prevented by slowing down the deposition rate. The second was the layer of gold added on top of platinum in the gate metal stack which reduces the effective work function of the whole gate due to its electronegativity properties. Since the device was designed for a platinum-only gate, this could explain the below zero VTH. This could be prevented either by using a platinum-only gate, or by matching the layer structure design and the actual gate metal used for the future devices. Post-metallisation thermal anneal was shown to mitigate both these effects. However, if post-metallisation annealing is used, care should be taken to ensure it is performed before the ohmic contacts are formed as the thermal treatment was shown to degrade the source/drain contacts. In addition, the programme of studies this thesis describes, also found that if the gate contact is deposited before the source/drain contacts, it causes a shift in threshold voltage towards negative values as the gate length decreases, because the ohmic contact anneal process affects the properties of the underlying material differently depending on whether it is covered with the gate metal or not. In terms of surface contamination; this work found that it causes device-to-device parameter variation, and a plasma clean is therefore essential. This work also demonstrated that the parasitic capacitances in the system, namely the contact periphery dependent gate-ohmic capacitance, plays a significant role in the total gate capacitance. This is true to such an extent that reducing the distance between the gate and the source/drain ohmic contacts in the device would help with shifting the threshold voltages closely towards the designed values. The findings made available by the collection of experiments performed for this work have two major applications. Firstly, these findings provide useful data in the study of the possible phenomena taking place inside the metal/GaGdO/GaAs layers and interfaces as the result of chemical processes applied to it. In addition, these findings allow recommendations as to how to best approach fabrication of devices utilising these layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regarding canal management modernization, water savings and water delivery quality, the study presents two automatic canal control approaches of the PI (Proportional and Integral) type: the distant and the local downstream control modes. The two PI controllers are defined, tuned and tested using an hydraulic unsteady flow simulation model, particularly suitable for canal control studies. The PI control parameters are tuned using optimization tools. The simulations are done for a Portuguese prototype canal and the PI controllers are analyzed and compared considering a demand-oriented-canal operation. The paper presents and analyzes the two control modes answers for five different offtake types – gate controlled weir, gate controlled orifice, weir with or without adjustable height and automatic flow adjustable offtake. The simulation results are compared using water volumes performance indicators (considering the demanded, supplied and the effectives water volumes) and a time indicator, defined taking into account the time during which the demand discharges are effective discharges. Regarding water savings, the simulation results for the five offtake types prove that the local downstream control gives the best results (no water operational losses) and that the distant downstream control presents worse results in connection with the automatic flow adjustable offtakes. Considering the water volumes and time performance indicators, the best results are obtained for the automatic flow adjustable offtakes and the worse for the gate controlled orifices, followed by the weir with adjustable height.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maintenance of glucose homeostasis is complex and involves, besides the secretion and action of insulin and glucagon, a hormonal and neural mechanism, regulating the rate of gastric emptying. This mechanism depends on extrinsic and intrinsic factors. Glucagon-like peptide-1 secretion regulates the speed of gastric emptying, contributing to the control of postprandial glycemia. The pharmacodynamic characteristics of various agents of this class can explain the effects more relevant in fasting or postprandial glucose, and can thus guide the individualized treatment, according to the clinical and pathophysiological features of each patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to analyze the prevalence of diabetes in older people and the adopted control measures. Data regarding older diabetic individuals who participated in the Health Surveys conducted in the Municipality of Sao Paulo, SP, ISA-Capital, in 2003 and 2008, which were cross-sectional studies, were analyzed. Prevalences and confidence intervals were compared between 2003 and 2008, according to sociodemographic variables. The combination of the databases was performed when the confidence intervals overlapped. The Chi-square (level of significance of 5%) and the Pearson's Chi-square (Rao-Scott) tests were performed. The variables without overlap between the confidence intervals were not tested. The age of the older adults was 60-69 years. The majority were women, Caucasian, with an income of between > 0.5 and 2.5 times the minimum salary and low levels of schooling. The prevalence of diabetes was 17.6% (95%CI 14.9;20.6) in 2003 and 20.1% (95%CI 17.3;23.1) in 2008, which indicates a growth over this period (p at the limit of significance). The most prevalent measure adopted by the older adults to control diabetes was hypoglycemic agents, followed by diet. Physical activity was not frequent, despite the significant differences observed between 2003 and 2008 results. The use of public health services to control diabetes was significantly higher in older individuals with lower income and lower levels of education. Diabetes is a complex and challenging disease for patients and the health systems. Measures that encourage health promotion practices are necessary because they presented a smaller proportion than the use of hypoglycemic agents. Public health policies should be implemented, and aimed mainly at older individuals with low income and schooling levels. These changes are essential to improve the health condition of older diabetic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A retrospective case-control study based on craniometrical evaluation was performed to evaluate the incidence of basilar invagination (BI). Patients with symptomatic tonsillar herniation treated surgically had craniometrical parameters evaluated based on CT scan reconstructions before surgery. BI was diagnosed when the tip of the odontoid trespassed the Chamberlain's line in three different thresholds found in the literature: 2, 5 or 6.6 mm. In the surgical group (SU), the mean distance of the tip of the odontoid process above the Chamberlain's line was 12 mm versus 1.2 mm in the control (CO) group (p<0.0001). The number of patients with BI according to the threshold used (2, 5 or 6.6 mm) in the SU group was respectively 19 (95%), 16 (80%) and 15 (75%) and in the CO group it was 15 (37%), 4 (10%) and 2 (5%).