966 resultados para GAMMA-GENERALIZED DISTRIBUTION
Resumo:
The generalized Birnbaum-Saunders distribution pertains to a class of lifetime models including both lighter and heavier tailed distributions. This model adapts well to lifetime data, even when outliers exist, and has other good theoretical properties and application perspectives. However, statistical inference tools may not exist in closed form for this model. Hence, simulation and numerical studies are needed, which require a random number generator. Three different ways to generate observations from this model are considered here. These generators are compared by utilizing a goodness-of-fit procedure as well as their effectiveness in predicting the true parameter values by using Monte Carlo simulations. This goodness-of-fit procedure may also be used as an estimation method. The quality of this estimation method is studied here. Finally, through a real data set, the generalized and classical Birnbaum-Saunders models are compared by using this estimation method.
Resumo:
In this paper we present an extension of the generalized Birnbaum-Saunders distribution family introduced in [Diaz-Garcia, J.A., Leiva-Sanchez, V., 2005. A new family of life distributions based on the contoured elliptically distributions. Journal of Statistical Planning and Inference 128 (2), 445-457] with a view to make it even more flexible in terms of its kurtosis coefficient. Properties involving moments and asymmetry and kurtosis indexes are studied for some special members of this family such as the slash Birnbaum-Saunders and slash-t Birnbaum-Saunders. Simulation studies for some particular cases and a real data analysis are also reported, illustrating the usefulness of the extension considered. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
There are several versions of the lognormal distribution in the statistical literature, one is based in the exponential transformation of generalized normal distribution (GN). This paper presents the Bayesian analysis for the generalized lognormal distribution (logGN) considering independent non-informative Jeffreys distributions for the parameters as well as the procedure for implementing the Gibbs sampler to obtain the posterior distributions of parameters. The results are used to analyze failure time models with right-censored and uncensored data. The proposed method is illustrated using actual failure time data of computers.
Resumo:
We present a measurement of the shape of the boson rapidity distribution for p (p) over bar -> Z/gamma(*)-> e(+)e(-)+X events at a center-of-mass energy of 1.96 TeV. The measurement is made for events with electron-positron mass 71 < M-ee < 111 GeV and uses 0.4 fb(-1) of data collected at the Fermilab Tevatron collider with the D0 detector. This measurement significantly reduces the uncertainties on the rapidity distribution in the forward region compared with previous measurements. Predictions of next-to-next-to-leading order (NNLO) QCD are found to agree well with the data over the full rapidity range.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a measurement of the shape of the Z/gamma* boson transverse momentum (q(T)) distribution in p (p) over bar -> Z/gamma(*)-> e(+)e(-)+X events at a center-of-mass energy of 1.96 TeV using 0.98 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent with the resummation prediction at low q(T), but above the perturbative QCD calculation in the region of q(T)> 30 GeV/c. Using events with q(T)< 30 GeV/c, we extract the value of g(2), one of the nonperturbative parameters for the resummation calculation. Data at large boson rapidity y are compared with the prediction of resummation and with alternative models that employ a resummed form factor with modifications in the small Bjorken x region of the proton wave function.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors.
Resumo:
In this article we propose an exact efficient simulation algorithm for the generalized von Mises circular distribution of order two. It is an acceptance-rejection algorithm with a piecewise linear envelope based on the local extrema and the inflexion points of the generalized von Mises density of order two. We show that these points can be obtained from the roots of polynomials and degrees four and eight, which can be easily obtained by the methods of Ferrari and Weierstrass. A comparative study with the von Neumann acceptance-rejection, with the ratio-of-uniforms and with a Markov chain Monte Carlo algorithms shows that this new method is generally the most efficient.
Resumo:
Mode of access: Internet.