950 resultados para Fuzzy graph theory


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since its introduction, fuzzy set theory has become a useful tool in the mathematical modelling of problems in Operations Research and many other fields. The number of applications is growing continuously. In this thesis we investigate a special type of fuzzy set, namely fuzzy numbers. Fuzzy numbers (which will be considered in the thesis as possibility distributions) have been widely used in quantitative analysis in recent decades. In this work two measures of interactivity are defined for fuzzy numbers, the possibilistic correlation and correlation ratio. We focus on both the theoretical and practical applications of these new indices. The approach is based on the level-sets of the fuzzy numbers and on the concept of the joint distribution of marginal possibility distributions. The measures possess similar properties to the corresponding probabilistic correlation and correlation ratio. The connections to real life decision making problems are emphasized focusing on the financial applications. We extend the definitions of possibilistic mean value, variance, covariance and correlation to quasi fuzzy numbers and prove necessary and sufficient conditions for the finiteness of possibilistic mean value and variance. The connection between the concepts of probabilistic and possibilistic correlation is investigated using an exponential distribution. The use of fuzzy numbers in practical applications is demonstrated by the Fuzzy Pay-Off method. This model for real option valuation is based on findings from earlier real option valuation models. We illustrate the use of number of different types of fuzzy numbers and mean value concepts with the method and provide a real life application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The shift towards a knowledge-based economy has inevitably prompted the evolution of patent exploitation. Nowadays, patent is more than just a prevention tool for a company to block its competitors from developing rival technologies, but lies at the very heart of its strategy for value creation and is therefore strategically exploited for economic pro t and competitive advantage. Along with the evolution of patent exploitation, the demand for reliable and systematic patent valuation has also reached an unprecedented level. However, most of the quantitative approaches in use to assess patent could arguably fall into four categories and they are based solely on the conventional discounted cash flow analysis, whose usability and reliability in the context of patent valuation are greatly limited by five practical issues: the market illiquidity, the poor data availability, discriminatory cash-flow estimations, and its incapability to account for changing risk and managerial flexibility. This dissertation attempts to overcome these impeding barriers by rationalizing the use of two techniques, namely fuzzy set theory (aiming at the first three issues) and real option analysis (aiming at the last two). It commences with an investigation into the nature of the uncertainties inherent in patent cash flow estimation and claims that two levels of uncertainties must be properly accounted for. Further investigation reveals that both levels of uncertainties fall under the categorization of subjective uncertainty, which differs from objective uncertainty originating from inherent randomness in that uncertainties labelled as subjective are highly related to the behavioural aspects of decision making and are usually witnessed whenever human judgement, evaluation or reasoning is crucial to the system under consideration and there exists a lack of complete knowledge on its variables. Having clarified their nature, the application of fuzzy set theory in modelling patent-related uncertain quantities is effortlessly justified. The application of real option analysis to patent valuation is prompted by the fact that both patent application process and the subsequent patent exploitation (or commercialization) are subject to a wide range of decisions at multiple successive stages. In other words, both patent applicants and patentees are faced with a large variety of courses of action as to how their patent applications and granted patents can be managed. Since they have the right to run their projects actively, this flexibility has value and thus must be properly accounted for. Accordingly, an explicit identification of the types of managerial flexibility inherent in patent-related decision making problems and in patent valuation, and a discussion on how they could be interpreted in terms of real options are provided in this dissertation. Additionally, the use of the proposed techniques in practical applications is demonstrated by three fuzzy real option analysis based models. In particular, the pay-of method and the extended fuzzy Black-Scholes model are employed to investigate the profitability of a patent application project for a new process for the preparation of a gypsum-fibre composite and to justify the subsequent patent commercialization decision, respectively; a fuzzy binomial model is designed to reveal the economic potential of a patent licensing opportunity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fuzzy set theory has a wider scope of applicability than classical set theory in solving various problems. Fuzzy set theory in the last three decades as a formal theory which got formalized by generalizing the original ideas and concepts in classical mathematical areas and as a very powerful modeling language, that can cope with a large fraction of uncertainties of real life situations. In Intuitionistic Fuzzy sets a new component degree of non membership in addition to the degree of membership in the case of fuzzy sets with the requirement that their sum be less than or equal to one. The main objective of this thesis is to study frames in Fuzzy and Intuitionistic Fuzzy contexts. The thesis proved some results such as ifµ is a fuzzy subset of a frame F, then µ is a fuzzy frame of F iff each non-empty level subset µt of µ is a subframe of F, the category Fuzzfrm of fuzzy frames has products and the category Fuzzfrm of fuzzy frames is complete. It define a fuzzy-quotient frame of F to be a fuzzy partition of F, that is, a subset of IF and having a frame structure with respect to new operations and study the notion of intuitionistic fuzzy frames and obtain some results and introduce the concept of Intuitionistic fuzzy Quotient frames. Finally it establish the categorical link between frames and intuitionistic fuzzy topologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study we combine the notions of fuzzy order and fuzzy topology of Chang and define fuzzy ordered fuzzy topological space. Its various properties are analysed. Product, quotient, union and intersection of fuzzy orders are introduced. Besides, fuzzy order preserving maps and various fuzzy completeness are investigated. Finally an attempt is made to study the notion of generalized fuzzy ordered fuzzy topological space by considering fuzzy order defined on a fuzzy subset.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Department of Mathematics, Cochin University of Science and Technology

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this thesis was to extend some basic concepts and results in module theory in algebra to the fuzzy setting.The concepts like simple module, semisimple module and exact sequences of R-modules form an important area of study in crisp module theory. In this thesis generalising these concepts to the fuzzy setting we have introduced concepts of ‘simple and semisimple L-modules’ and proved some results which include results analogous to those in crisp case. Also we have defined and studied the concept of ‘exact sequences of L-modules’.Further extending the concepts in crisp theory, we have introduced the fuzzy analogues ‘projective and injective L-modules’. We have proved many results in this context. Further we have defined and explored notion of ‘essential L-submodules of an L-module’. Still there are results in crisp theory related to the topics covered in this thesis which are to be investigated in the fuzzy setting. There are a lot of ideas still left in algebra, related to the theory of modules, such as the ‘injective hull of a module’, ‘tensor product of modules’ etc. for which the fuzzy analogues are not defined and explored.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The doctoral thesis focuses on the Studies on fuzzy Matroids and related topics.Since the publication of the classical paper on fuzzy sets by L. A. Zadeh in 1965.the theory of fuzzy mathematics has gained more and more recognition from many researchers in a wide range of scientific fields. Among various branches of pure and applied mathematics, convexity was one of the areas where the notion of fuzzy set was applied. Many researchers have been involved in extending the notion of abstract convexity to the broader framework of fuzzy setting. As a result, a number of concepts have been formulated and explored. However. many concepts are yet to be fuzzified. The main objective of this thesis was to extend some basic concepts and results in convexity theory to the fuzzy setting. The concept like matroids, independent structures. classical convex invariants like Helly number, Caratheodoty number, Radon number and Exchange number form an important area of study in crisp convexity theory. In this thesis, we try to generalize some of these concepts to the fuzzy setting. Finally, we have defined different types of fuzzy matroids derived from vector spaces and discussed some of their properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is a study of abstract fuzzy convexity spaces and fuzzy topology fuzzy convexity spaces No attempt seems to have been made to develop a fuzzy convexity theoryin abstract situations. The purpose of this thesis is to introduce fuzzy convexity theory in abstract situations

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis comprises five chapters including the introductory chapter. This includes a brief introduction and basic definitions of fuzzy set theory and its applications, semigroup action on sets, finite semigroup theory, its application in automata theory along with references which are used in this thesis. In the second chapter we defined an S-fuzzy subset of X with the extension of the notion of semigroup action of S on X to semigroup action of S on to a fuzzy subset of X using Zadeh's maximal extension principal and proved some results based on this. We also defined an S-fuzzy morphism between two S-fuzzy subsets of X and they together form a category S FSETX. Some general properties and special objects in this category are studied and finally proved that S SET and S FSET are categorically equivalent. Further we tried to generalize this concept to the action of a fuzzy semigroup on fuzzy subsets. As an application, using the above idea, we convert a _nite state automaton to a finite fuzzy state automaton. A classical automata determine whether a word is accepted by the automaton where as a _nite fuzzy state automaton determine the degree of acceptance of the word by the automaton. 1.5. Summary of the Thesis 17 In the third chapter we de_ne regular and inverse fuzzy automata, its construction, and prove that the corresponding transition monoids are regular and inverse monoids respectively. The languages accepted by an inverse fuzzy automata is an inverse fuzzy language and we give a characterization of an inverse fuzzy language. We study some of its algebraic properties and prove that the collection IFL on an alphabet does not form a variety since it is not closed under inverse homomorphic images. We also prove some results based on the fact that a semigroup is inverse if and only if idempotents commute and every L-class or R-class contains a unique idempotent. Fourth chapter includes a study of the structure of the automorphism group of a deterministic faithful inverse fuzzy automaton and prove that it is equal to a subgroup of the inverse monoid of all one-one partial fuzzy transformations on the state set. In the fifth chapter we define min-weighted and max-weighted power automata study some of its algebraic properties and prove that a fuzzy automaton and the fuzzy power automata associated with it have the same transition monoids. The thesis ends with a conclusion of the work done and the scope of further study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels