929 resultados para Fungal endophytes
Resumo:
A survey for mycotoxins and fungal damage in maize (Zea mays L.) grown during 1982 in Far North Queensland is reported. This season had a rainfall distribution which was typical for the reglon. The 293 samples examined came from 11 1 farms in eight maize-growing districts. The samples were first subjected to rapid screening tests for fungal damage. Aflatoxins B1, B2, G1, G2 ochratoxin A, T-2 toxin, and sterigmatocystin were not detected, but zearalenone was found in 85% of the samples. The concentrations of zearalenone were correlated with the extent of Gibberella zeae cob rot as indicated by the proportion (up to 2%) of kernels in each sample having a reddish-purple discoloration. In four samples the zearalenone concentration exceeded 1 mg kg-1, but the mean ¦ s.d. (n = 293) concentration in all samples was 0.17 ¦ 0.225 mg kg-1. Concentrations were highest in districts with the highest rainfall during the period of maize growth.
Resumo:
Sago starch is an important source of dietary carbohydrates in lowland Papua New Guinea. Over the past 30 years there have been sporadic reports of severe illness following consumption of sago starch. A common assumption is that fungal metabolites might be associated with the illness, leading to the need for a more thorough investigation of the mycoflora of sago starch. Sago starch was collected from areas of high sago consumption in Papua New Guinea for fungal analysis (69 samples). Storage methods and duration were recorded at the time of collection and pH on arrival at the laboratory. Yeasts were isolated from all samples except two, ranging from 1.2 × 103 to 8.3 × 107 cfu/g. Moulds were isolated from 65 of the 69 samples, ranging from 1.0 × 102 to 3.0 × 106 cfu/g. Of 44 samples tested for ergosterol content, 42 samples showed the presence of fungal biomass. Statistical analyses indicated that sago starch stored for greater than five weeks yielded significantly higher ergosterol content and higher numbers of moulds than sago stored for less than five weeks. The method of storage was also shown to influence mould numbers with storage in natural woven fibre containers returning significantly greater numbers than present in other storage methods tested. Potentially mycotoxigenic genera of moulds including Aspergillus and Penicillium were commonly isolated from sago starch, and as such storage factors that influence the growth of these and other filamentous fungi might contribute to the safety of traditional sago starch in PNG.
Resumo:
The effect of fungal endophyte (Neotyphodium lolii) infection on the performance of perennial ryegrass (Lolium perenne) growing under irrigation in a subtropical environment was investigated. Seed of 4 cultivars, infected with standard (common toxic or wild-type) endophyte or the novel endophyte AR1, or free of endophyte (Nil), was sown in pure swards, which were fertilised with 50 kg N/ha.month. Seasonal and total yield, persistence, and rust susceptibility were assessed over 3 years, along with details of the presence of endophyte and alkaloids in plant shoots. Endophyte occurrence in tillers in both the standard and AR1 treatments was above 95% for Bronsyn and Impact throughout and rose to that level in Samson by the end of the second year. Meridian AR1 only reached 93% while, in the standard treatment, the endophyte had mostly died before sowing. Nil Zendophyte treatments carried an average of ?0.6% infection throughout. Infection of the standard endophyte was associated with increased dry matter (DM) yields in all 3 years compared with no endophyte. AR1 also significantly increased yields in the second and third years. Over the full 3 years, standard and AR1 increased yields by 18% and 11%, respectively. Infection with both endophytes was associated with increased yields in all 4 seasons, the effects increasing in intensity over time. There was 27% better persistence in standard infected plants compared with Nil at the end of the first year, increasing to 198% by the end of the experiment, while for AR1 the improvements were 20 and 134%, respectively. The effect of endophyte on crown rust (Puccinia coronata) infection was inconsistent, with endophyte increasing rust damage on one occasion and reducing it on another. Cultivar differences in rust infection were greater than endophyte effects. Plants infected with the AR1 endophyte had no detectable ergovaline or lolitrem B in leaf, pseudostem, or dead tissue. In standard infected plants, ergovaline and lolitrem B were highest in pseudostem and considerably lower in leaf. Dead tissue had very low or no detectable ergovaline but high lolitrem B concentrations. Peramine concentration was high and at similar levels in leaf and pseudostem, but not detectable in dead material. Concentration was similar in both AR1 and standard infected plants. Endophyte presence appeared to have a similar effect in the subtropics as has been demonstrated in temperate areas, in terms of improving yields and persistence and increasing tolerance of plants to stress factors.
Resumo:
The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis, is enigmatic because it occurs globally in both declining and apparently healthy (non-declining) amphibian populations. This distribution has fueled debate concerning whether, in sites where it has recently been found, the pathogen was introduced or is endemic. In this study, we addressed the molecular population genetics of a global collection of fungal strains from both declining and healthy amphibian populations using DNA sequence variation from 17 nuclear loci and a large fragment from the mitochondrial genome. We found a low rate of DNA polymorphism, with only two sequence alleles detected at each locus, but a high diversity of diploid genotypes. Half of the loci displayed an excess of heterozygous genotypes, consistent with a primarily clonal mode of reproduction. Despite the absence of obvious sex, genotypic diversity was high (44 unique genotypes out of 59 strains). We provide evidence that the observed genotypic variation can be generated by loss of heterozygosity through mitotic recombination. One strain isolated from a bullfrog possessed as much allelic diversity as the entire global sample, suggesting the current epidemic can be traced back to the outbreak of a single clonal lineage. These data are consistent with the current chytridiomycosis epidemic resulting from a novel pathogen undergoing a rapid and recent range expansion. The widespread occurrence of the same lineage in both healthy and declining populations suggests that the outcome of the disease is contingent on environmental factors and host resistance.
Resumo:
Biological control of weeds has been carried out in Fiji since 1911, when the seed-fly Ophiomyia lantanae was introduced in an attempt to control Lantana camara. In 1988, the thrips Liothrips mikaniae was introduced from Trinidad into the Solomon Islands in an attempt to undertake biocontrol of Mikania micrantha (mikania) in the Pacific. A small colony of the thrips was subsequently taken from the Solomon Islands to the Kerevat Lowlands Agricultural Experimental Station in New Britain, Papua New Guinea (PNG). Now two decades later and for the first time, a pathogenic rust fungus has been imported for use against mikania, one of Fiji’s and the Pacific’s worst invasive weeds.
Resumo:
The Forest health guide: symptoms of insect and fungal damage on trees is intended to help forestry and quarantine staff undertake tree health assessments, in both forest and urban environments. The guide is designed to be used as a quick reference to common symptoms of damage, not as an identification guide to particular insect pests and pathogens.
Resumo:
Cattle ticks and buffalo flies impose significant economic burdens on the Northern Australian cattle and dairy industries. With the increased temperatures expected under climate change the range of parasites such as these is likely to extend. Current control options for these ectoparasites are limited by problems associated with chemical resistance and residues. Fungal biopesticides offer a sustainable and promising alternative method of control. Laboratory and animal studies have established the potential for the fungus Metarhizium in tick control and provided data that suggests a secondary effect of buffalo fly control is possible. Small field trials are required to obtain a proof of concept for the control of ticks and buffalo flies on animals.
Resumo:
Investigation of potential for fungal control of small hive beetles.
Resumo:
Quantal response bioassays were conducted with cattle ticks and sheep blowflies with three different isolates of Metarhizium anisopliae and different methods of inoculation. Ticks were either topically dosed with 2 mu l or immersed in the conidial preparations. Blowflies were either topically dosed with 2 mu l of the conidial preparation or fed on conidia mixed with sugar. Probit analyses were carried out on the mortality data to compare the virulence of these isolates to ticks and blowflies and look for indications of different virulence mechanisms employed by M. anisopliae isolates when invading these hosts. One isolate (ARIM16) showed high virulence to both hosts killing 95% of ticks after 2 days and 88 (+/- 2)% of blowflies after 4 days. Strikingly different mortality patterns indicated that virulence is dependent on different mechanisms in ticks and blowflies. The pattern of mortality seen with ticks suggested that the number of conidia adhering per unit area of the cuticle was more important for rapid tick death than the total number of conidia contacting the entire tick surface. Blowflies fed conidia mixed with food died rapidly after an initial lag phase regardless of dose.
Resumo:
Sprouting of fast-growing broad-leaved trees causes problems in young coniferous stands, under power transmission lines and along roads and railways. Public opinion and the Finnish Forest Certification System oppose the use of chemical herbicides to control sprouting, which means that most areas with problems rely on mechanical cutting. However, cutting is a poor control method for many broad-leaved species because the removal of leaders can stimulate the sprouting of side branches and cut stumps quickly re-sprout. In order to be effective, cutting must be carried out frequently but each cut increases the costs, making this control method increasingly difficult and expensive once begun. As such, alternative methods for sprout control that are both effective and environmentally sound represent a continuing challenge to managers and research biologists. Using biological control agents to prevent sprouting has been given serious consideration recently. Dutch and Canadian researchers have demonstrated the potential of the white-rot fungus Chondrostereum purpureum (Pers. ex Fr.) Pouzar as a control agent of stump sprouting in many hardwoods. These findings have focused the attention of the Finnish forestry community on the utilization of C. purpureum for biocontrol purposes. Primarily, this study sought determines the efficacy of native C. purpureum as an inhibitor of birch stump sprouting in Finland and to clarify its mode of action. Additionally, genotypic variation in Finnish C. purpureum was examined and the environmental risks posed by a biocontrol program using this fungus were assessed. Experimental results of the study demonstrated that C. purpureum clearly affects the sprouting of birch: both the frequency of living stumps and the number of living sprouts per stump were effectively reduced by the treatment. However, the treatment had no effect on the maximum height of new sprouts. There were clear differences among fungal isolates in preventing sprouting and those that possessed high oxidative activities as measured in the laboratory inhibited sprouting most efficiently in the field. The most effective treatment time during the growing season was in early and mid summer (May July). Genetic diversity in Nordic and Baltic populations of C. purpureum was found to be high at the regional scale but locally homogeneous. This natural distribution of diversity means that using local genotypes in biocontrol programs would effectively prevent the introduction of novel genes or genotypes. While a biocontrol program using local strains of C. purpureum would be environmentally neutral, pruned birches that are close to the treatment site would have a high susceptibility to infect by the fungus during the early spring.
Resumo:
1. Changes in bacterial and fungal communities in chicken litter with high and low moisture content over a five week period during a single chicken grow out cycle in a poultry shed in subtropical Australia were investigated to study the association between specific microbes and odour production. 2. Microbial biomass, as indicated by DNA yields, was higher and community composition was more dynamic over time in moist compared with dry chicken litter. 3. Bacillus, Atopostipes and Aspergillus species increased in relative abundance in moist chicken litter samples over time reflecting the relatively high fitness and hence activity of these specific bacteria and this specific fungus in this environment.
Resumo:
Across three tropical Australian sclerophyll forest types, site-specific environmental variables could explain the distribution of both quantity (abundance and biomass) and richness (genus and species) of hypogeous fungi sporocarps. Quantity was significantly higher in the Allocasuarina forest sites that had high soil nitrogen but low phosphorous. Three genera of hypogeous fungi were found exclusively in Allocasuarina forest sites including Gummiglobus, Labyrinthomyces and Octaviania, as were some species of Castoreum, Chondrogaster, Endogone, Hysterangium and Russula. However, the forest types did not all group according to site-scale variables and subsequently the taxonomic assemblages were not significantly different between the three forest types. At site scale, significant negative relationships were found between phosphorous concentration and the quantity of hypogeous fungi sporocarps. Using a multivariate information theoretic approach, there were other more plausible models to explain the patterns of sporocarp richness. Both the mean number of fungal genera and species increased with the number of Allocasuarina stems, at the same time decreasing with the number of Eucalyptus stems. The optimal conditions for promoting hypogeous fungi sporocarp quantity and sporocarp richness appear to be related to the presence and abundance of Allocasuarina (Casuarinaceae) host trees. Allocasuarina tree species may have a higher host receptivity for ectomycorrhizal hypogeous fungi species that provide an important food resource for Australian mycophagous animals.
Resumo:
Novel species of microfungi described in the present study include the following from Australia: Catenulostroma corymbiae from Corymbia, Devriesia stirlingiae from Stirlingia, Penidiella carpentariae from Carpentaria, Phaeococcomyces eucalypti from Eucalyptus, Phialophora livistonae from Livistona, Phyllosticta aristolochiicola from Aristolochia, Clitopilus austroprunulus on sclerophyll forest litter of Eucalyptus regnans and Toxicocladosporium posoqueriae from Posoqueria. Several species are also described from South Africa, namely: Ceramothyrium podocarpi from Podocarpus, Cercospora chrysanthemoides from Chrysanthemoides, Devriesia shakazului from Aloe, Penidiella drakensbergensis from Protea, Strelitziana cliviae from Clivia and Zasmidium syzygii from Syzygium. Other species include Bipolaris microstegii from Microstegium and Synchaetomella acerina from Acer (USA), Brunneiapiospora austropalmicola from Rhopalostylis (New Zealand), Calonectria pentaseptata from Eucalyptus and Macadamia (Vietnam), Ceramothyrium melastoma from Melastoma (Indonesia), Collembolispora aristata from stream foam (Czech Republic), Devriesia imbrexigena from glazed decorative tiles (Portugal), Microcyclospora rhoicola from Rhus (Canada), Seiridium phylicae from Phylica (Tristan de Cunha, Inaccessible Island), Passalora lobeliaefistulosis from Lobelia (Brazil) and Zymoseptoria verkleyi from Poa (The Netherlands). Valsalnicola represents a new ascomycete genus from Alnus (Austria) and Parapenidiella a new hyphomycete genus from Eucalyptus (Australia). Morphological and culture characteristics along with ITS DNA barcodes are also provided. © 2012 Nationaal Herbarium Nederland & Centraalbureau voor Schimmelcultures.
Resumo:
Valko- ja ruskolahosienet tunnetaan luonnossa tehokkaimpina puun ja karikkeen lignoselluloosan lahottajina. Valkolahosienet pystyvät hajottamaan kaikkia puun osia: ligniiniä, selluloosaa ja hemiselluloosaa. Selektiivisesti ligniiniä hajottavat sienet lahottavat puusta suhteessa enemmän vaikeasti hajoavaa ligniiniä kuin selluloosaa tai hemiselluloosaa, jolloin jäljelle jää valkoista ja miltei puhdasta selluloosaa. Bioteknisissä sovelluksissa juuri selektiviiviset valkolahottajat ovat kiinnostavia. Niiden avulla voidaan puuhaketta esikäsitellä esimerkiksi paperinvalmistuksessa haitallisen ligniinin poistamiseksi. Ruskolahosienet ovat huomattavia puun, puutavaran ja puisten rakenteiden lahottajia, kuten tässä työssä käytetty Gloeophyllum trabeum (saunasieni ) ja Poria (Postia) placenta (istukkakääpä). Ruskolahosienet hajottavat puusta hemiselluloosan lisäksi selluloosaa, jolloin jää jäljelle ruskea ja jauhomaiseksi mureneva ligniini. Ruskolahosienet muovaavat ligniiniä jonkin verran. Kahden ruskolahosienen G. trabeumin ja P. placentan lisäksi tutkittiin valkolahosieniä, joista Ceriporiopsis subvermispora (karstakääpä) ja harvinainen Physisporinus rivulosus -sieni (talikääpä) hajottavat ligniiniä erittäin selektiivisesti. Phanerochaete chrysosporium on kaikkialla paljon tutkittu sieni, ja Phlebia radiata valkolahosientä (rusorypykkä) on tutkittu paljon mikrobiologian osastolla. Lisäksi tutkittiin Phlebia tremellosa -sienten (hytyrypykkä) ligninolyyttisten entsyymien tuottoa ja 14C-leimatun synteettisen ligniinin (DHP) hajotusta. P. radiata ja P. tremellosa -sienten on todettu aiemmin hajottavan ligniiniä selektiivisesti. Työssä selvitettiin miten sienten kasvua voi mitata, miten vertailukelpoisia eri mittaamismenetelmillä saadut tulokset ovat ja ilmenevätkö sienten aktiivisimmat kasvuvaiheet samaan aikaan eri menetelmillä mitattuna. Tärkeimmät tulokset olivat seuraavat havainnot: (i) P. radiata ja P. tremellosa -sienikannat tuottivat ligniini- ja mangaaniperoksidaasientsyymejä (LiP ja MnP) sekä lakkaasia, ja sienistä puhdistettiin 2-3 LiP- ja P. radiatasta yksi MnP-entsyymi; (ii) P. tremellosa -sienet hajottivat leimattua synteettistä ligniiniä (DHP) yhtä hyvin kuin paljon tutkitut P. chrysosporium ja P. radiata -sienet; (iii) puu, sienen luonnollinen kasvualusta, lisäsi valkolaho- ja ruskolahosienten demetoksylaatiota [O14CH3]-leimatusta ligniinin malliyhdisteestä 14CO2:ksi ilman puuta olleeseen alustaan verrattuna; (iv) demetoksylaatio (14CO2:n tuotto) oli normaalissa ilma-atmosfäärissä useimmiten parempi happeen verrattuna; (v) hapessa paras 14CO2:n tuotto saatiin puupalakasvatuksissa, joihin oli lisätty ravinnetyppeä tai typen lisäksi glukoosia sekä valkolaho- että ruskolahosienillä; (vi) ilmassa 14CO2:n tuotto oli puulla voimakkainta valkolahosienillä ilman lisäravinteita, kun taas G. trabeum -sienellä se oli yhtä hyvä eri alustoissa; (vii) biomassan muodostuminen rihmastojen ergosterolipitoisuuksista mitattuna oli ruskolahosienillä parempi kuin valkolahosienillä; (viii) ja biomassojen huippupitoisuudet olivat 6:lla sienellä eri suuruisia ja niiden maksimimäärien ajankohdat vaihtelivat viiden viikon kasvatusten kuluessa. Mikrobiologian osastolla Viikissä eristetty ja paljon tutkittu P. radiata -valkolahosieni oli mukana kaikissa tehdyissä kokeissa. Sienen LiP-aktiivisuus ja 14CO2:n tuotto 14C-rengas-leimatusta synteettisestä ligniinistä (DHP) korreloivat erittäin hyvin. Biomassan muodostuminen ergosterolilla määritettynä tuki hyvin entsyymiaktiivisuusmittauksilla ja isotooppikasvatuksilla saatuja tuloksia.
Resumo:
Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils 'suppressive' or 'non-suppressive' for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria , Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. © 2014 Penton et al.