905 resultados para Fuchsian groups, Uniformization, Calabi-Yau manifold, differential equation, mirror symmetry
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.
Resumo:
In this paper we show that the quaternion orders OZ[ √ 2] ≃ ( √ 2, −1)Z[ √ 2] and OZ[ √ 3] ≃ (3 + 2√ 3, −1)Z[ √ 3], appearing in problems related to the coding theory [4], [3], are not maximal orders in the quaternion algebras AQ( √ 2) ≃ ( √ 2, −1)Q( √ 2) and AQ( √ 3) ≃ (3 + 2√ 3, −1)Q( √ 3), respectively. Furthermore, we identify the maximal orders containing these orders.
Resumo:
In this paper we study the periodic orbits of the third-order differential equation x ′′′−µx ′′+ x ′ − µx = εF (x, x ′ , x ′′), where ε is a small parameter and the function F is of class C 2 .
Resumo:
The use of fractional calculus when modeling phenomena allows new queries concerning the deepest parts of the physical laws involved in. Here we will be dealing with an apparent paradox in which the time of transference from zero in a system with fractional derivatives can be strictly shortened relatively to the minimal time transference done in an equivalent system in the frame of the entire derivatives.
Resumo:
In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay.
Resumo:
The continued fraction method for solving differential equations is illustrated using three famous differential equations used in quantum chemistry.
Resumo:
Originally presented as the author's thesis, University of Illinois at Urbana-Champaign.
Resumo:
In this paper, we consider analytical and numerical solutions to the Dirichlet boundary-value problem for the biharmonic partial differential equation on a disc of finite radius in the plane. The physical interpretation of these solutions is that of the harmonic oscillations of a thin, clamped plate. For the linear, fourth-order, biharmonic partial differential equation in the plane, it is well known that the solution method of separation in polar coordinates is not possible, in general. However, in this paper, for circular domains in the plane, it is shown that a method, here called quasi-separation of variables, does lead to solutions of the partial differential equation. These solutions are products of solutions of two ordinary linear differential equations: a fourth-order radial equation and a second-order angular differential equation. To be expected, without complete separation of the polar variables, there is some restriction on the range of these solutions in comparison with the corresponding separated solutions of the second-order harmonic differential equation in the plane. Notwithstanding these restrictions, the quasi-separation method leads to solutions of the Dirichlet boundary-value problem on a disc with centre at the origin, with boundary conditions determined by the solution and its inward drawn normal taking the value 0 on the edge of the disc. One significant feature for these biharmonic boundary-value problems, in general, follows from the form of the biharmonic differential expression when represented in polar coordinates. In this form, the differential expression has a singularity at the origin, in the radial variable. This singularity translates to a singularity at the origin of the fourth-order radial separated equation; this singularity necessitates the application of a third boundary condition in order to determine a self-adjoint solution to the Dirichlet boundary-value problem. The penultimate section of the paper reports on numerical solutions to the Dirichlet boundary-value problem; these results are also presented graphically. Two specific cases are studied in detail and numerical values of the eigenvalues are compared with the results obtained in earlier studies.
Resumo:
The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution of this problem. Two numerical examples are given.
Resumo:
Mathematics Subject Classification: 26A33, 76M35, 82B31
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
2000 Mathematics Subject Classification: 34K15, 34C10.
Resumo:
2000 Mathematics Subject Classification: 60H15, 60H40