946 resultados para Free-radical Polymerization
Resumo:
We describe the use of poly(alpha-methylstyrene peroxide) (P alpha MSP), an alternating copolymer of alpha-methylstyrene and oxygen, as initiator for the radical polymerization of vinyl monomers. Thermal decomposition of P alpha MSP in 1,4-dioxane follows first-order kinetics with an activation energy (E(a)) of 34.6 kcal/mol. Polymerization of methyl methacrylate (MMA) and styrene using P alpha MSP as an initiator was carried out in the temperature range 60-90 degrees C. The kinetic order with respect to the initiator and the monomer was close to 0.5 and 1.0, respectively, for both monomers. The E(a) for the polymerization was 20.6 and 22.9 kcal/mol for MMA and styrene, respectively. The efficiency of P alpha MSP was found to be in the range 0.02-0.04. The low efficiency of P alpha MSP was explained in terms of the unimolecular decomposition of the alkoxy radicals which competes with primary radical initiation. The presence of peroxy segments in the main chain of PMMA and polystyrene was confirmed from spectroscopic and DSC studies. R(i)'/2I values for P alpha MSP compared to that of BPO at 80 degrees C indicate that P alpha MSP can be used as an effective high-temperature initiator.
Resumo:
Epoxy-terminated polystyrene has been synthesized by radical polymerization using alpha-(t-butylperoxymethyl) styrene (TPMS) as the chain transfer agent. The chain transfer constants were found to be 0.66 and 0.80 at 60 and 70 degrees C, respectively. The presence of epoxy end groups was confirmed by functional group modification of epoxide to aldehyde by treatment with BF3.Et(2)O. Thermal stability of TPMS was followed by differential scanning calorimetry and iodimetry. Thermal decomposition of TPMS in toluene follows first order kinetics with an activation energy of 23 kcal/mol. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Nostoc sphaeroides Kuetzing has been used as a traditional medicine in China to treat a variety of ailments. This research identified the antioxidant activities of polysaccharide extract from Nostoc sphaeroides. The extract, which contains 46.2% carbohydrates, exhibited an effective scavenging capability on superoxide radical, hydroxyl radicals in non site-specific as well as site-specific assays, and also performed lipid peroxidation inhibition in a dose-dependent manner. Polysaccharide extract had no 1,1-diphenyl-2-picrylhydrazyl radical scavenging potential at all test concentrations. Activities of superoxide dismutase, catalase, and glutathione peroxidase in human embryo kidney 293 cells were increased effectively when Nostoc sphaeroides extract was applied. These results suggested that the use of N. sphaeroides in treating ailments may be based on the antioxidant capacities of polysaccharide composition.
Resumo:
Cellulose phenylcarbamate derivatives having methacrylate groups were synthesized with regioselective and non-regioselective procedures. These derivatives were chemically immobilized onto a vinylized silica gel, respectively, via a radical co-polymerization reaction. The immobilization was efficiently attained using a small amount of AIBN. The chiral recognition abilities of the prepared chiral stationary phases (CSPs) were evaluated by HPLC resolution of test enantiomers. It was observed that most of the enantiomers were completely resolved with markedly high column efficiency of 30,000-40,000 plates per metre for the eluted peaks. The effect of the amount of methacrylolyl chloride used for preparation on resolution was investigated. A direct comparison of the chiral recognition ability was made on the regioselectively and non-regioselectively prepared CSPs. In addition, the chemically bonded-type of CSPs were found to be relatively stable with addition of solvents such as tetrahydrofuran (THF) and chloroform into the mobile phase, which can lead to the dissolution of cellulose derivatives on the coated CSPs. Thus the choice of solvents used as the mobile phase is greatly extended and better resolution of several test enantiomers was observed on the prepared CSPs with THF and chloroform as a composition in the mobile phase. The batch-to-batch and run-to-run reproducibility was also discussed on the newly prepared CSPs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have developed a novel strategy for the preparation of ion-bonded supramolecular star polymers by RAFT polymerization. An ion-bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert-butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by H-1 NMR and GPC. The results show that the polymerization possesses the character of living free-radical polymerization and the ion-bonded supramolecular star polymers PSt, PtBA, and PSt-b-PtBA, with six well-defined arms, were successfully synthesized.
Resumo:
Living characteristics of facilely prepared Ziegler-Natta type catalyst system consisting of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite have been found in the polymerization of 1,3-butadiene in hexane at 40 degrees C. The characteristics have been well demonstrated by: a first-order kinetics with respect to monomer conversion, a narrow molecular weight distribution (M-w/M-n = 1.48-1.52) of polybutadiene in the entire range of polymerization conversion and a good linearity between M-n and the yield of polymer. Feasible post-polymerization of 1,3-butadiene and block co-polymerization of 1,3-butadiene and isoprene further support the living natures of the catalyst bestowed with.
Resumo:
Hyperbranched polymers with numerous pendent norbornene functionalities have been synthesized via the radical polymerization of a novel asymmetrical divinyl monomer hearing a higher reactivity methacrylate group and it lower reactivity norbornene group. Mediated by a rapid reversible addition-fragmentation chain transfer (RAFT) equilibrium, the concentration of polymeric chain radicals is decreased, and thus the gelation did not occur until higher monomer conversions (ca. 90%). An increase in reaction temperature call also significantly promote the formation of the hyperbranched structure owing to the decreased stability of the intermediate radicals derived from the norbornene group, which was confirmed by a model copolymerization system of two single vinyl monomers with similar structures to the vinyl groups in the asymmetrical divinyl monomer. Furthermore, Tri-SEC and conventional Sin-SEC as well as H-1 NMR.
Resumo:
Hyperbranched vinyl polymers were prepared by reversible addition-fragmentation chain transfer ( RAFT) polymerization of a styrenic asymmetric divinyl monomer. This was achieved by using cumyl dithiobenzoate or S-dodecyl-S'-(alpha,alpha'-dimethyl-alpha ''-acetic acid) trithiocarbonate as the chain transfer agent, 1,1'-azobis(cyclohexanecarbonitrile) or thermal initiation as a source of radicals. Cross-linking was inhibited by a rapid RAFT-based equilibrium between active propagation chains and dormant species, and thus a hyperbranched polymer with a monomer conversion as high as 80% was obtained. The hyperbranched structure and properties of the resultant polymers were characterized by a combination of H-1-NMR spectroscopy and a triple detection size exclusion chromatography (TRI-SEC). The hyperbranched vinyl polymer has a broad molecular weight distributions and a low Mark-Houwink exponent alpha value compared with the linear counterpart.
Resumo:
A new initiator for atom transfer radical polymerization (ATRP), (Cl-2 HCCOO)(3) -C-6 H-3, (TrDCAP),has been designed and successfully synthesized. ATRP of styrene was carried out by using TrDCAP as hexafunctional initiator and the CuCl/bpy catalyst at 130 degrees C in 30% THF via core-first strategy. The Arm-6 PS-AAP was synthesized by etherealization of Arm-6 PS and 4-(4'-methoxyphenylazomethine) phenol (AAP). The initiator and the architectures of the Arm-6 PS were confirmed by H-1-NMR, FT-IR, UV-Vis and GPC.
Resumo:
The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new there exists E-shaped amphiphilic block copolymer, (PMMA)(2)-PEO-(PS)(2)-PEO-(PMMA)(2) [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso-2,3-dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)(2)-PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm-4 amphiphilic block copolymer, (HO-PEO)(2)-PS2, was esterified with 2,2-dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the there exists E-shaped amphiphilic block copolymer.
Resumo:
Surface-tethered oppositely charged weak polyelectrolyte block copolymer brushes composed of poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) were grown from the Si wafer by atom-transfer radical polymerization. The P2VP-b-PAA brushes were prepared through hydrolysis of the second PtBA block to the corresponding acrylic acid. The P2VP-b-PAA brushes with different PAA block length were obtained. The P2VP-b-PAA brushes revealed a unique reversible wetting behavior with pH. The difference between the solubility parameters for P2VP and PAA, the changes of surface chemical composition and surface roughness, and the reversible wetting behavior illustrated that the surface rearrangement occurred during treatment of the P2VP-b-PAA brushes by aqueous solution with different pH value. The reversible properties of the P2VP-b-PAA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.
Resumo:
Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,