922 resultados para Forecast accuracy
Resumo:
Ocean prediction systems are now able to analyse and predict temperature, salinity and velocity structures within the ocean by assimilating measurements of the ocean’s temperature and salinity into physically based ocean models. Data assimilation combines current estimates of state variables, such as temperature and salinity, from a computational model with measurements of the ocean and atmosphere in order to improve forecasts and reduce uncertainty in the forecast accuracy. Data assimilation generally works well with ocean models away from the equator but has been found to induce vigorous and unrealistic overturning circulations near the equator. A pressure correction method was developed at the University of Reading and the Met Office to control these circulations using ideas from control theory and an understanding of equatorial dynamics. The method has been used for the last 10 years in seasonal forecasting and ocean prediction systems at the Met Office and European Center for Medium-range Weather Forecasting (ECMWF). It has been an important element in recent re-analyses of the ocean heat uptake that mitigates climate change.
Resumo:
Despite the commonly held belief that aggregate data display short-run comovement, there has been little discussion about the econometric consequences of this feature of the data. We use exhaustive Monte-Carlo simulations to investigate the importance of restrictions implied by common-cyclical features for estimates and forecasts based on vector autoregressive models. First, we show that the ìbestî empirical model developed without common cycle restrictions need not nest the ìbestî model developed with those restrictions. This is due to possible differences in the lag-lengths chosen by model selection criteria for the two alternative models. Second, we show that the costs of ignoring common cyclical features in vector autoregressive modelling can be high, both in terms of forecast accuracy and efficient estimation of variance decomposition coefficients. Third, we find that the Hannan-Quinn criterion performs best among model selection criteria in simultaneously selecting the lag-length and rank of vector autoregressions.
Resumo:
This paper studies the electricity load demand behavior during the 2001 rationing period, which was implemented because of the Brazilian energetic crisis. The hourly data refers to a utility situated in the southeast of the country. We use the model proposed by Soares and Souza (2003), making use of generalized long memory to model the seasonal behavior of the load. The rationing period is shown to have imposed a structural break in the series, decreasing the load at about 20%. Even so, the forecast accuracy is decreased only marginally, and the forecasts rapidly readapt to the new situation. The forecast errors from this model also permit verifying the public response to pieces of information released regarding the crisis.
Resumo:
A new Coastal Rapid Environmental Assessment (CREA) strategy has been developed and successfully applied to the Northern Adriatic Sea. CREA strategy exploits the recent advent of operational oceanography to establish a CREA system based on an operational regional forecasting system and coastal monitoring networks of opportunity. The methodology wishes to initialize a coastal high resolution model, nested within the regional forecasting system, blending the large scale parent model fields with the available coastal observations to generate the requisite field estimates. CREA modeling system consists of a high resolution, O(800m), Adriatic SHELF model (ASHELF) implemented into the Northern Adriatic basin and nested within the Adriatic Forecasting System (AFS) (Oddo et al. 2006). The observational system is composed by the coastal networks established in the framework of ADRICOSM (ADRiatic sea integrated COastal areaS and river basin Managment system) Pilot Project. An assimilation technique exerts a correction of the initial field provided by AFS on the basis of the available observations. The blending of the two data sets has been carried out through a multi-scale optimal interpolation technique developed by Mariano and Brown (1992). Two CREA weekly exercises have been conducted: the first, at the beginning of May (spring experiment); the second in middle August (summer experiment). The weeks have been chosen looking at the availability of all coastal observations in the initialization day and one week later to validate model results, verifying our predictive skills. ASHELF spin up time has been investigated too, through a dedicated experiment, in order to obtain the maximum forecast accuracy within a minimum time. Energetic evaluations show that for the Northern Adriatic Sea and for the forcing applied, a spin-up period of one week allows ASHELF to generate new circulation features enabled by the increased resolution and its total kinetic energy to establish a new dynamical balance. CREA results, evaluated by mean of standard statistics between ASHELF and coastal CTDs, show improvement deriving from the initialization technique and a good model performance in the coastal areas of the Northern Adriatic basin, characterized by a shallow and wide continental shelf subject to substantial freshwater influence from rivers. Results demonstrate the feasibility of our CREA strategy to support coastal zone management and wish an additional establishment of operational coastal monitoring activities to advance it.
Resumo:
Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.
Resumo:
We use residual-delay maps of observational field data for barometric pressure to demonstrate the structure of latitudinal gradients in nonlinearity in the atmosphere. Nonlinearity is weak and largely lacking in tropical and subtropical sites and increases rapidly into the temperate regions where the time series also appear to be much noisier. The degree of nonlinearity closely follows the meridional variation of midlatitude storm track frequency. We extract the specific functional form of this nonlinearity, a V shape in the lagged residuals that appears to be a basic feature of midlatitude synoptic weather systems associated with frontal passages. We present evidence that this form arises from the relative time scales of high-pressure versus low-pressure events. Finally, we show that this nonlinear feature is weaker in a well regarded numerical forecast model (European Centre for Medium-Range Forecasts) because small-scale temporal and spatial variation is smoothed out in the grided inputs. This is significant, in that it allows us to demonstrate how application of statistical corrections based on the residual-delay map may provide marked increases in local forecast accuracy, especially for severe weather systems.
Resumo:
International Financial Reporting Standards (IFRS) have been promoted as a global set of financial reporting standards that will help integrate global capital markets. We examine whether the mandatory European-wide adoption of IFRS in 2005 improved the forecast accuracy for foreign analysts relative to that of domestic analysts. We find that, on average, foreign analysts experience no incremental improvement in forecast accuracy relative to domestic analysts. However, we find that those foreign analysts who are familiar with IFRS do experience an incremental improvement in forecast accuracy relative to domestic analysts. We also find that this incremental improvement in forecast accuracy relative to domestic analysts is concentrated among firms domiciled in countries with both strong enforcement regimes and domestic accounting standards that differ significantly from IFRS. Our results highlight that both familiarity with IFRS and the quality of countries' enforcement environments play key roles in determining the extent to which IFRS adoption can reduce information asymmetry between foreign and domestic analysts.
Resumo:
The aim of this research is to improve the planning methodology of Dunlop via an analysis of their annual planning system. This was approached via an investigation of how the plans were developed; extensive interviews, which analysed divisional attitudes and approaches to planning; an analysis of forecast accuracy; and participation in the planning system itself. These investigations revealed certain deficiencies in the operating of the system. In particular, little evidence of formal planning could be found, and some divisions were reacting ex post to the market, rather than planning ex ante. The resulting plans tended to lack resilience and were generally unrealistic, partly because of imposed targets. Similarly, because the links between the elements of the system were often inefficient, previously agreed strategies were not always implemented. The analysis of forecast accuracy in the plans revealed divisions to be poor at most aspects of forecasting. Simple naive models often outperformed divisional forecasts, and much of the error was attributed to systematic, and therefore eliminable factors. These analyses suggested the need for a new system which is proposed in the form of Budgetary Planning. This system involves conceptual changes within the current planning framework. Such changes aim to revise tactical planning in order to meet the needs placed on it by. in particular, strategic planning. Budgetary Planning is an innovation in terms of the current planning literature. It is a total system of annual planning aimed at implementing and controlling the iteratively agreed strategies within the current environment. This is achieved by the generation of tactical alternatives, variable funding and concentration of forecast credibility, all of which aid both the realism and the resilience of planning.
Resumo:
Using the wisdom of crowds---combining many individual forecasts to obtain an aggregate estimate---can be an effective technique for improving forecast accuracy. When individual forecasts are drawn from independent and identical information sources, a simple average provides the optimal crowd forecast. However, correlated forecast errors greatly limit the ability of the wisdom of crowds to recover the truth. In practice, this dependence often emerges because information is shared: forecasters may to a large extent draw on the same data when formulating their responses.
To address this problem, I propose an elicitation procedure in which each respondent is asked to provide both their own best forecast and a guess of the average forecast that will be given by all other respondents. I study optimal responses in a stylized information setting and develop an aggregation method, called pivoting, which separates individual forecasts into shared and private information and then recombines these results in the optimal manner. I develop a tailored pivoting procedure for each of three information models, and introduce a simple and robust variant that outperforms the simple average across a variety of settings.
In three experiments, I investigate the method and the accuracy of the crowd forecasts. In the first study, I vary the shared and private information in a controlled environment, while the latter two studies examine forecasts in real-world contexts. Overall, the data suggest that a simple minimal pivoting procedure provides an effective aggregation technique that can significantly outperform the crowd average.
Resumo:
Doutoramento em Economia
Resumo:
Regional commodity forecasts are being used increasingly in agricultural industries to enhance their risk management and decision-making processes. These commodity forecasts are probabilistic in nature and are often integrated with a seasonal climate forecast system. The climate forecast system is based on a subset of analogue years drawn from the full climatological distribution. In this study we sought to measure forecast quality for such an integrated system. We investigated the quality of a commodity (i.e. wheat and sugar) forecast based on a subset of analogue years in relation to a standard reference forecast based on the full climatological set. We derived three key dimensions of forecast quality for such probabilistic forecasts: reliability, distribution shift, and change in dispersion. A measure of reliability was required to ensure no bias in the forecast distribution. This was assessed via the slope of the reliability plot, which was derived from examination of probability levels of forecasts and associated frequencies of realizations. The other two dimensions related to changes in features of the forecast distribution relative to the reference distribution. The relationship of 13 published accuracy/skill measures to these dimensions of forecast quality was assessed using principal component analysis in case studies of commodity forecasting using seasonal climate forecasting for the wheat and sugar industries in Australia. There were two orthogonal dimensions of forecast quality: one associated with distribution shift relative to the reference distribution and the other associated with relative distribution dispersion. Although the conventional quality measures aligned with these dimensions, none measured both adequately. We conclude that a multi-dimensional approach to assessment of forecast quality is required and that simple measures of reliability, distribution shift, and change in dispersion provide a means for such assessment. The analysis presented was also relevant to measuring quality of probabilistic seasonal climate forecasting systems. The importance of retaining a focus on the probabilistic nature of the forecast and avoiding simplifying, but erroneous, distortions was discussed in relation to applying this new forecast quality assessment paradigm to seasonal climate forecasts. Copyright (K) 2003 Royal Meteorological Society.
Resumo:
This thesis examines the effects of macroeconomic factors on inflation level and volatility in the Euro Area to improve the accuracy of inflation forecasts with econometric modelling. Inflation aggregates for the EU as well as inflation levels of selected countries are analysed, and the difference between these inflation estimates and forecasts are documented. The research proposes alternative models depending on the focus and the scope of inflation forecasts. I find that models with a Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) in mean process have better explanatory power for inflation variance compared to the regular GARCH models. The significant coefficients are different in EU countries in comparison to the aggregate EU-wide forecast of inflation. The presence of more pronounced GARCH components in certain countries with more stressed economies indicates that inflation volatility in these countries are likely to occur as a result of the stressed economy. In addition, other economies in the Euro Area are found to exhibit a relatively stable variance of inflation over time. Therefore, when analysing EU inflation one have to take into consideration the large differences on country level and focus on those one by one.
Resumo:
Due to the global crisis o f climate change many countries throughout the world are installing the renewable energy o f wind power into their electricity system. Wind energy causes complications when it is being integrated into the electricity system due its intermittent nature. Additionally winds intennittency can result in penalties being enforced due to the deregulation in the electricity market. Wind power forecasting can play a pivotal role to ease the integration o f wind energy. Wind power forecasts at 24 and 48 hours ahead of time are deemed the most crucial for determining an appropriate balance on the power system. In the electricity market wind power forecasts can also assist market participants in terms o f applying a suitable bidding strategy, unit commitment or have an impact on the value o f the spot price. For these reasons this study investigates the importance o f wind power forecasts for such players as the Transmission System Operators (TSOs) and Independent Power Producers (IPPs). Investigation in this study is also conducted into the impacts that wind power forecasts can have on the electricity market in relation to bidding strategies, spot price and unit commitment by examining various case studies. The results o f these case studies portray a clear and insightful indication o f the significance o f availing from the information available from wind power forecasts. The accuracy o f a particular wind power forecast is also explored. Data from a wind power forecast is examined in the circumstances o f both 24 and 48 hour forecasts. The accuracy o f the wind power forecasts are displayed through a variety o f statistical approaches. The results o f the investigation can assist market participants taking part in the electricity pool and also provides a platform that can be applied to any forecast when attempting to define its accuracy. This study contributes significantly to the knowledge in the area o f wind power forecasts by explaining the importance o f wind power forecasting within the energy sector. It innovativeness and uniqueness lies in determining the accuracy o f a particular wind power forecast that was previously unknown.
Resumo:
The main objective of this thesis was to study if the quantitative sales forecasting methods will enhance the accuracy of the sales forecast in comparison to qualitative sales forecasting method. A literature review in the field of forecasting was conducted, including general sales forecasting process, forecasting methods and techniques and forecasting accuracy measurement. In the empirical part of the study the accuracy of the forecasts provided by both qualitative and quantitative methods is being studied and compared in the case of short, medium and long term forecasts. The SAS® Forecast Server –tool was used in creating the quantitative forecasts.
Resumo:
Volatility has a central role in various theoretical and practical applications in financial markets. These include the applications related to portfolio theory, derivatives pricing and financial risk management. Both theoretical and practical applications require good estimates and forecasts for the asset return volatility. The goal of this study is to examine the forecast performance of one of the more recent volatility measures, model-free implied volatility. Model-free implied volatility is extracted from the prices in the option markets, and it aims to provide an unbiased estimate for the market’s expectation on the future level of volatility. Since it is extracted from the option prices, model-free implied volatility should contain all the relevant information that the market participants have. Moreover, model-free implied volatility requires less restrictive assumptions than the commonly used Black-Scholes implied volatility, which means that it should be less biased estimate for the market’s expectations. Therefore, it should also be a better forecast for the future volatility. The forecast performance of model-free implied volatility is evaluated by comparing it to the forecast performance of Black-Scholes implied volatility and GARCH(1,1) forecast. Weekly forecasts for six years period were calculated for the forecasted variable, German stock market index DAX. The data consisted of price observations for DAX index options. The forecast performance was measured using econometric methods, which aimed to capture the biasedness, accuracy and the information content of the forecasts. The results of the study suggest that the forecast performance of model-free implied volatility is superior to forecast performance of GARCH(1,1) forecast. However, the results also suggest that the forecast performance of model-free implied volatility is not as good as the forecast performance of Black-Scholes implied volatility, which is against the hypotheses based on theory. The results of this study are consistent with the majority of prior research on the subject.