760 resultados para Film and Television
Nanohardness of a Ti thin film and its interface deposited by an electron beam on a 304 SS substrate
Resumo:
The results of nanohardness measurements at a film surface and film-substrate interface are presented and discussed. An electron beam device was used to deposit a Ti film on a 304 stainless steel (304 SS) substrate. The diluted interface was obtained by thermal activated atomic diffusion. The. Ti film and Ti film-304 SS interface were analyzed by energy dispersive spectrometry and were observed using atomic force microscopy. The nanohardness of the Ti film-304 SS system was measured by a nanoindentation technique. The results showed the Ti film-304 SS interface had a higher hardness value than the Ti film and 304 SS substrate. The Ti film surface had a lower hardness due to the presence of a TiO2 thin layer.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL(-1)) to 4000 ng mL(-1), and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL-1) to 4000 ng mL-1, and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
The application of photonic crystal technology on metal-oxide film is a very promising field for future optical telecommunication systems. Band gap and polarization effects in lithium niobate (LiNbO3) photonic crystals and bismuth-substituted iron garnets (BiYIG) photonic crystals are investigated in this work reported here. The design and fabrication process are similar for these two materials while the applications are different, involving Bragg filtering in lithium niobate and polarization rotation in nonreciprocal iron garnets. The research of photonic structures in LiNbO3 is of high interest for integrated device application due to its remarkable electro-optical characteristics. This work investigated the photonic band gap in high quality LiNbO3 single crystalline thin film by ion implantation to realize high efficiency narrow bandwidth filters. LiNbO3 thin film detachment by bonding is also demonstrated for optical device integration. One-dimensional Bragg BiYIG waveguides in gyrotropic system are found to have multiple stopbands and evince enhancement of polarization rotation efficiency. Previous photon trapping theory cannot explain the phenomena because of the presence of linear birefringence. This work is aimed at investigating the mechanism with the support of experiments. The results we obtained show that selective suppression of Bloch states in gyrotropic bandgaps is the key mechanism for the observed phenomena. Finally, the research of ferroelectric single crystal PMN-PT with ultra high piezoelectric coefficient as a biosensor is also reported. This work presents an investigation and results on higher sensitivity effects than conventional materials such as quartz and lithium niobate.
Resumo:
Two studies were conducted to determine how well story grammar predicted recall of televised stories. In Experiment 1, preschoolers viewed a non-narrated televised story from "Sesame Street." In Experiment 2, preschoolers and adults were administered a narrative via television or radio. In both studies, subjects' retention reflected recall of nodal information, regardless of medium of input.
Resumo:
Intercultural Approaches to Cities and Spaces in Literature, Film, and New Media: a review of new work by Manzanas and Benito and Lopez-Varela and Net
Resumo:
The present thesis has been devoted to the synthesis and investigation of functional properties of silicon carbide thin films and nanowires. The work took profit from the experience of the research group in the synthesis of 3C-SiC from vapour phase. 3C-SiC thin films Thin films heteroepitaxy on silicon substrates was carried out in a vapour phase epitaxy reactor. The initial efforts were committed to the process development in order to enhance the crystal quality of the epi-layer. The carbonization process and a buffer layer procedure were optimized in order to obtain good quality monocrystalline 3C-SiC layers. The films characterization was used not only to improve the entire process, but also to assess the crystalline quality and to identify the defects. Methyltrichlorosilane (MTS) was introduced during the synthesis to increase the growth rate and enhance crystalline quality. The effect of synthesis parameters such as MTS flow and process temperature was studied in order to promote defect density reduction and the release of the strain due to lattice mismatch between 3C-SiC and silicon substrate. In-growth n-type doping was implemented using a nitrogen gas line and the effect of different synthesis parameters on doping level was studied. Raman measurements allowed a contactless characterization and evaluation of electrically active dopant. The effect of MTS on nitrogen incorporation was investigated and a promotion of dopant concentration together with a higher growth rate were demonstrated. This result allows to obtain higher doping concentrations without deteriorating crystal quality in 3C-SiC and, to the best of our knowledge, it has never been demonstrated before. 3C-SiC nanowires Core-shell SiC-SiO2 nanowires were synthesized using a chemical vapour deposition technique in an open tube configuration reactor on silicon substrates. Metal catalyst were used to promote a uniaxial growth and a dense bundle of nanowires 100 µm long and 60 nm thick was obtained. Substrate preparation was found to be fundamental in order to obtain a uniform nanowire density. Morphological characterization was carried out using scanning electron microscopy and the analysis of structural, compositional, optical properties is reported.