999 resultados para Filling factor


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the interlayer coupling on formation of the quantized Hall conductor phase at the filling factor v = 2 was studied in the multi-layer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to the localized electrons was found in the quantized Hall phase of the isolated multi-quantum well structure. On the other hand, the quantized Hall phase of the weakly coupled multi-layers emitted an unexpected asymmetrical line similar to that one observed in the metallic electron systems. We demonstrated that the observed asymmetry is caused by a partial population of the extended electron states formed in the quantized Hall conductor phase due to the interlayer percolation. A sharp decrease of the single-particle scattering time associated with these extended states was observed at the filling factor v = 2. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the quantum Hall regime, the longitudinal resistivity rho (xx) plotted as a density-magnetic-field (n (2D) -B) diagram displays ringlike structures due to the crossings of two sets of spin split Landau levels from different subbands [see, e.g., Zhang et al., in Phys. Rev. Lett. 95:216801, 2005. For tilted magnetic fields, some of these ringlike structures ""shrink"" as the tilt angle is increased and fully collapse at theta (c) a parts per thousand 6A degrees. Here we theoretically investigate the topology of these structures via a non-interacting model for the 2DEG. We account for the inter Landau-level coupling induced by the tilted magnetic field via perturbation theory. This coupling results in anticrossings of Landau levels with parallel spins. With the new energy spectrum, we calculate the corresponding n (2D) -B diagram of the density of states (DOS) near the Fermi level. We argue that the DOS displays the same topology as rho (xx) in the n (2D) -B diagram. For the ring with filling factor nu=4, we find that the anticrossings make it shrink for increasing tilt angles and collapse at a large enough angle. Using effective parameters to fit the theta=0A degrees data, we find a collapsing angle theta (c) a parts per thousand 3.6A degrees. Despite this factor-of-two discrepancy with the experimental data, our model captures the essential mechanism underlying the ring collapse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper surveys the topology of macroporous silica prepared using latex templates covering the submicrometric range (0.1-0.7 mu m). The behavior of latex spheres in aqueous dispersion has been analyzed by dynamic light scattering (DLS) measurement indicating the most appropriate conditions to form well-defined cubic arrays. The optical behavior of latex spheres has been analyzed by transmittance and reflectance measurements in order to determine their diameter and filling factor when they were assembled in bidimensional arrays. Macroscopic templates have been obtained by a centrifugation process and their crystalline ordering has been confirmed by porosimetry and scanning electron microscopy. These self-assembled structures have been used to produce macroporous silica, whose final topology depends on the pore size distribution of the original template. It has been seen that latex spheres are ordered in a predominant fcc arrangement with slipping of tetragonal pores due to the action of attractive electrostatic interactions. The main effect is to change the spherical shape of voids in macroporous silica into a hexagonal configuration with possible applications to fabricate photonic devices with novel optical properties. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge neutrality point in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to the edge state transport via counterpropagating chiral modes similar to the quantum spin Hall effect at a zero magnetic field and graphene near a Landau filling factor nu = 0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

5 We employ the circular-polarization-resolved magnetophotoluminescence technique to probe the spin character of electron and hole states in a GaAs/AlGaAs strongly coupled double-quantum-well system. The photoluminescence (PL) intensities of the lines associated with symmetric and antisymmetric electron states present clear out-of-phase oscillations between integer values of the filling factor. and are caused by magnetic-field-induced changes in the population of occupied Landau levels near to the Fermi level of the system. Moreover, the degree of circular polarization of these emissions also exhibits the oscillatory behavior with increasing magnetic field. Both quantum oscillations observed in the PL intensities and in the degree of polarizations may be understood in terms of a simple single-particle approach model. The k . p method was used to calculate the photoluminescence peak energies and the degree of circular polarizations in the double-quantum-well structure as a function of the magnetic field. These calculations prove that the character of valence band states plays an important role in the determination of the degree of circular polarization and, thus, resulting in a magnetic-field-induced change of the polarization sign.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photoluminescence from individual quantum wells of artificially disordered weakly coupled multi-layers embedded in wide AlGaAs parabolic wells was investigated in a strong magnetic field. We show that the response of the individual wells is very different from the average response of the multi-layers studied by transport measurements and that photoluminescence represents a local probe of the quantum Hall state formed in three-dimensional electron system. The observed magnetic field induced variations of the in-layer electron density demonstrate the formation of a new phase in the quasi-three-dimensional electron system. The sudden change in the local electron density found at the Landau filling factor nu = 1 by both the magneto-transport and the magneto-photoluminescence measurements was assigned to the quantum phase transition. Copyright (C) EPLA, 2012

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polarized photoluminescence from weakly coupled random multiple well quasi-three-dimensional electron system is studied in the regime of the integer quantum Hall effect. Two quantum Hall ferromagnetic ground states assigned to the uncorrelated miniband quantum Hall state and to the spontaneous interwell phase coherent dimer quantum Hall state are observed. Photoluminescence associated with these states exhibits features caused by finite-size skyrmions: dramatic reduction of the electron spin polarization when the magnetic field is increased past the filling factor nu = 1. The effective skyrmion size is larger than in two-dimensional electron systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this present work high quality PMMA opals with different sphere sizes, silica opals from large size spheres, multilayer opals, and inverse opals were fabricated. Highly monodisperse PMMA spheres were synthesized by surfactant-free emulsion polymerization (polydispersity ~2%). Large-area and well-ordered PMMA crystalline films with a homogenous thickness were produced by the vertical deposition method using a drawing device. Optical experiments have confirmed the high quality of these PMMA photonic crystals, e.g., well resolved high-energy bands of the transmission and reflectance spectra of the opaline films were observed. For fabrication of high quality opaline photonic crystals from large silica spheres (diameter of 890 nm), self-assembled in patterned Si-substrates a novel technique has been developed, in which the crystallization was performed by using a drawing apparatus in combination with stirring. The achievements comprise a spatial selectivity of opal crystallization without special treatment of the wafer surface, the opal lattice was found to match the pattern precisely in width as well as depth, particularly an absence of cracks within the size of the trenches, and finally a good three-dimensional order of the opal lattice even in trenches with a complex confined geometry. Multilayer opals from opaline films with different sphere sizes or different materials were produced by sequential crystallization procedure. Studies of the transmission in triple-layer hetero-opal revealed that its optical properties cannot only be considered as the linear superposition of two independent photonic bandgaps. The remarkable interface effect is the narrowing of the transmission minima. Large-area, high-quality, and robust photonic opal replicas from silicate-based inorganic-organic hybrid polymers (ORMOCER® s) were prepared by using the template-directed method, in which a high quality PMMA opal template was infiltrated with a neat inorganic-organic ORMOCER® oligomer, which can be photopolymerized within the opaline voids leading to a fully-developed replica structure with a filling factor of nearly 100%. This opal replica is structurally homogeneous, thermally and mechanically stable and the large scale (cm2 size) replica films can be handled easily as free films with a pair of tweezers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the diffraction behavior of plasmonic Bessel beams propagating in metal-dielectric stratified materials and wire media. Our results reveal various regimes in which polarization singularities are selectively maintained. This polarization-pass effect can be controlled by appropriately setting the filling factor of the metallic inclusions and its internal periodic distribution. These results may have implications in the development of devices at the nanoscale level for manipulation of polarization and angular momentum of cylindrical vector beams.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Controlling the growth mechanism for nano-structures is one of the most critical topics in material science. In the past 10 years there has been intensive research worldwide in IIIN based nanowires for its many unique photonic and electrical properties at this scale. There are several advantages to nanostructuring III-N materials, including increased light extraction, increased device efficiency, reduction of efficiency droop, and reduction in crystallographic defect density. High defect densities that normally plague III-N materials and reduce the device efficiency are not an issue for nano-structured devices such as LEDs, due to the effective strain relaxation. Additionally regions of the light spectrum such as green and yellow, once found difficult to achieve in bulk planar LEDs, can be produced by manipulating the confinement and crystal facet growth directions of the active regions. A cheap and easily repeatable self-assembly nano-patterning technique at wafer scale was designed during this thesis for top down production of III-N nanowires. Through annealing under ammonia and N2 gas flow, the first reported dislocation defect bending was observed in III-N nanorods by in-situ transmission electron microscopy heating. By growing on these etched top down nanorods as a template, ultra-dense nanowires with apex tipped semi-polar tops were produced. The uniform spacing of 5nm between each wire is the highest reported space-filling factor at 98%. Finally by using these ultra-dense nanorods bridging the green gap of the light spectrum was possible, producing the first reported red, yellow, green light emission from a single nano-tip.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims. The large and small-scale (pc) structure of the Galactic interstellar medium can be investigated by utilising spectra of early-type stellar probes of known distances in the same region of the sky. This paper determines the variation in line strength of Ca ii at 3933.661 Å as a function of probe separation for a large sample of stars, including a number of sightlines in the Magellanic Clouds. 

Methods. FLAMES-GIRAFFE data taken with the Very Large Telescope towards early-type stars in 3 Galactic and 4 Magellanic open clusters in Ca ii are used to obtain the velocity, equivalent width, column density, and line width of interstellar Galactic calcium for a total of 657 stars, of which 443 are Magellanic Cloud sightlines. In each cluster there are between 43 and 111 stars observed. Additionally, FEROS and UVES Ca ii K and Na i D spectra of 21 Galactic and 154 Magellanic early-type stars are presented and combined with data from the literature to study the calcium column density - parallax relationship. 

Results. For the four Magellanic clusters studied with FLAMES, the strength of the Galactic interstellar Ca ii K equivalent width on transverse scales from ∼0.05-9 pc is found to vary by factors of ∼1.8-3.0, corresponding to column density variations of ∼0.3-0.5 dex in the optically-thin approximation. Using FLAMES, FEROS, and UVES archive spectra, the minimum and maximum reduced equivalent widths for Milky Way gas are found to lie in the range ∼35-125 mÅ and ∼30-160 mÅ for Ca ii K and Na i D, respectively. The range is consistent with a previously published simple model of the interstellar medium consisting of spherical cloudlets of filling factor ∼0.3, although other geometries are not ruled out. Finally, the derived functional form for parallax (π) and Ca ii column density (NCaII) is found to be π(mas) = 1 / (2.39 × 10-13 × NCaII (cm-2) + 0.11). Our derived parallax is ∼25 per cent lower than predicted by Megier et al. (2009, A&A, 507, 833) at a distance of ∼100 pc and ∼15 percent lower at a distance of ∼200 pc, reflecting inhomogeneity in the Ca ii distribution in the different sightlines studied.