980 resultados para Fiber of sugar cane
Resumo:
The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaça) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L - 1 for lead and copper. The limits of detection were 48.5 and 23.9 µg L - 1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.
Resumo:
The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaca) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L-1 for lead and copper. The limits of detection were 48.5 and 23.9 mu g L-1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.
Resumo:
The kinetics of sugar cane bagasse cellulose saccharification and the decomposition of glucose under extremely low acid (ELA) conditions, (0.07%), 0.14%, and 0.28% H2SO4, and at high temperatures were investigated using batch reactors. The first-order rate constants were obtained by weight loss, remaining glucose, and fitting glucose concentration profiles determined with HPLC using the Saeman model. The maximum glucose yields reached 67.6% (200 degrees C, 0.07% H2SO4, 30 min), 69.8% (210 degrees C, 0.14% H2SO4, 10 min), and 67.3% (210 degrees C, 0.28% H2SO4, 6 min). ELA conditions produced remarkable glucose yields when applied to bagasse cellulose. The first-order rate constants were used to calculate activation energies and extrathermodynamic parameters to elucidate the reaction mechanism under ELA conditions. The effect of acid concentration on cellulose hydrolysis and glucose decomposition was also investigated. The observed activation energies and reaction orders with respect to hydronium ion for cellulose hydrolysis and glucose decomposition were 184.9 and 124.5 kJ/mol and 1.27 and 0.75, respectively.
Resumo:
CHEMICAL COMPOSITION OF SUGAR CANE SPIRITS FERMENTED BY DIFFERENT Saccharomyces cerevisiae YEAST STRAINS. The aim of this study was to evaluate the chemical composition of sugar cane spirits, fermented by different commercial Saccharomyces cerevisiae yeast strains and double distilled by pot still. Sugar cane juices were separately fermented by yeasts CA-11, Y-904, BG-1, PE-2, SA-1 and CAT-1 and distilled by pot still according to the methodology used for whisky production. The alcoholic liquids from first and second distillations were analyzed for concentrations of ethanol, volatile acidity, aldehydes, esters, furfural, higher alcohols and methanol. The sugar cane spirits derived from fermentation by the different yeast strains presented distinct chemical compositions.
Resumo:
The aim of this study was to verify the effect of a double distillation on the reduction of the ethyl carbamate content in sugar cane spirit. Ethyl carbamate is a potentially carcinogenic compound normally present at critical levels in sugar cane spirit, constituting a public health problem and therefore hindering the export of this beverage. The ethanol, copper and ethyl carbamate contents were evaluated, using gas chromatography/mass spectroscopy, during a double distillation of the fermented sugar cane juice. The distillate fraction from the first distillation accumulated 30% of the ethyl carbamate formed. In the second distillation, the ethyl carbamate and the copper content increased during the process as the alcohol content decreased, and only 3% of the ethyl carbamate formed was collected in the spirit. Double distillation decreased the ethyl carbamate content in the sugar cane spirit by 97%. (C) Copyright 2012 The Institute of Brewing & Distilling
Resumo:
The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaça) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L- 1 for lead and copper. The limits of detection were 48.5 and 23.9 µg L- 1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.
Resumo:
There is interest in the use of sugar cane waste biomass for electricity cogeneration, by integrated gasification combined cycle (IGCC) processes. This paper describes one aspect of an overall investigation into the reactivity of cane wastes under pressurized IGGC conditions, for input into process design. There is currently a gap in understanding the morphological transformations experienced by cane waste biomass undergoing conversion to char during pressurized gasification, which is addressed by this work. Char residuals remaining after pressurized pyrolysis and carbon dioxide gasification were analysed by optical microscope, nitrogen (BET) adsorption analysis, SEM/EDS, TEM/EDS and XPS techniques. The amorphous cane plant silica structures were found to remain physically intact during entrained flow gasification, but chemically altered in the presence of other inorganic species. The resulting crystalline silicates were mesoporous (with surface areas of the order of 20 m(2) g(-1)) and contributed to much of the otherwise limited pore volume present in the residual chars. Coke deposition and intimate blending of the carbonaceous and inorganic species was identified. Progressive sintering of the silicates appeared to trap coke deposits in the pore network. As a result ash residuals showed significant organic contents, even after extensive additional oxidation in air. The implications of the findings are that full conversion of cane trash materials under pressurized IGCC conditions may be significantly hampered by the silica structures inherent in these biomass materials and that further research of the contributing phenomena is recommended.
Resumo:
This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources.
Resumo:
Brazil is the world biggest producer of sugar cane with an area of 7x10(6) hectares. Mainly the system used for planting is the semi-mechanized one, which consists in opening the furrows with a machine, manually allocating the fractioned stalks and then covering the furrows done by the machines. The great amount of human labor used in the semi-mechanized system is becoming harder to find and also more expensive, indicating the need of a fully mechanized operation. Currently in Brazil these agriculture machines industries offers six different types of fully mechanized sugar cane planters (two types of whole stalks for planting and four using mechanized harvested stalks known as billets). All of them plant in two furrows simultaneously in 1.5 m row spacing. This study analyzed five different machines and the following variables: Working Speed (km h(-1)); Effective Capacity (ha h(-1)), Drawbar Force (kgf), Draw Bar Power (in HP), Fuel Consumption (L h(-1)) and Costs (US$ ha(-1)) comparing them with the semi-mechanized system. This research also characterized the stalks for planting as viable gems number (%), non viable gems number (%) and billet length (m). And lastly the mechanized planting system is cheaper than the conventional one and none of the machines has an adequate mechanism for placing the right amount of sugar cane seed.
Resumo:
Fiji disease (FD) of sugar cane caused by Fiji disease virus (FDV) is transmitted by the planthopper Perkinsiella saccharicida Kirkaldy (Hemiptera: Delphacidae). FD is effectively managed by using resistant cultivars, but whether the resistance is for the vector or for the Virus is Unknown. This knowledge would help develop a rapid and reliable glasshouse-based screening method for disease resistance. Sugar cane cultivars resistant, intermediate, and susceptible to FD were screened in a glasshouse, and the relationship between vector preferences and FD incidence was studied. Cultivar preference by nymphs increased with an increase in cultivar susceptibility to FD, but the relationship between adult preference and FD resistance was not significant. There was a positive correlation between the vector population and FD incidence, and the latent period for symptom expression declined with the increase in the vector populations. FD incidence in the glasshouse trial reflected the field-resistance status of sugar cane cultivars with known FD-resistance scores. The results suggest that resistance to FD in sugar cane is mediated by cultivar preference of the plant-hopper vector.
Resumo:
Chagas disease can be transmitted to man by many different means, including contact with infected triatomine feces, blood transfusion, laboratory accidents, organ transplants, and congenital or oral routes. The latter mode has received considerable attention recently. In this assay, we evaluate the survival of Trypanosoma cruzi contaminating sugar cane used to prepare juice, as well as the viability and capacity for infection by the parasite after recovery. Thirty triatomines were contaminated with T. cruzi Y strain and 45 days later pieces of sugar cane were contaminated with the intestinal contents of the insects. The pieces were ground at different intervals after contamination (time = 0, 1, 4, 6, 12 and 24 hours) and the juice extracted and analyzed. Different methods were used to show T. cruzi in the juice: direct analysis, hematocrit tube centrifugation and QBC, and experimental inoculation in 47 female BALB/c mice (five control mice and seven mice for each interval examined (five inoculated orally and two intraperitoneally). Positive results were found using the direct analysis and QBC methods for juice prepared up to 12 hours after initial contamination. However, by the centrifugation technique, positivity was found only up to four hours after contamination of the sugar cane. Inoculated animals showed parasitemia during a 14 day observation period, demonstrating the high survival rate of T. cruzi in sugar cane.
Resumo:
The response to B in agricultural systems of sugar cane is still an unexplored issue; B application has however recently been widely publicized and used with a certain degree of frequency. The use of 10B-labeled fertilizers may further contribute to clarify this practice. With the objective of evaluating sugar cane use of B (10B) derived from fertilizer (boric acid), an experiment was conducted under field conditions in the 2005/2006 growing season. The experiment consisted of the installation of microplots (2 x 1.5 m) where 4 kg ha-1 B (boric acid with 85.95 % in 10B atoms) dissolved in water was applied 90 days after planting (May 2005). The solution was applied to the soil on both sides of the plant row at a distance of 20 cm. After harvest (June 2006) the B content and 10B abundance in % atoms in all parts of the sugar cane plants (stalks, dry leaves, tips and roots) were determined. Results showed that the total B accumulated was 471 g ha-1 in the entire plant (35 % in the stalks, 22 % in the dry leaves, 9 % in the tips and 34 % in the roots). The sugar cane plants used on average 14 % of the total accumulated B in the above-ground part (44 g ha-1) and 11 % in the roots (19 g ha-1), totaling 13 % in the entire plant (63 g ha-1). The recovery of 10B-fertilizer by sugar cane plants was low, around 2 % of the total applied amount.
Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation
Resumo:
Streams located in areas of sugar cane cultivation receive elevated concentrations of metal ions from soils of adjacent areas. The accumulation of metals in the sediments results in environmental problems and leads to bioaccumulation of metal ions by the aquatic organisms. In the present study, bioaccumulation of the metals ions Al, Cd, Cr, Cu, Fe, Mg, Mn and Zn in aquatic insects in streams impacted by the sugar cane was evaluated. The results pointed out that the insects were contaminated by the sediment and that the collector organisms as Chironomus species accumulated higher concentration of metals than the predator organisms.
Resumo:
Brazil is the world biggest producer of sugar cane with an area of 7x10(6) hectares. Mainly the system used for planting is the semi-mechanized one, which consists in opening the furrows with a machine, manually allocating the fractioned stalks and then covering the furrows done by the machines. The great amount of human labor used in the semi-mechanized system is becoming harder to find and also more expensive, indicating the need of a fully mechanized operation. Currently in Brazil these agriculture machines industries offers six different types of fully mechanized sugar cane planters (two types of whole stalks for planting and four using mechanized harvested stalks known as billets). All of them plant in two furrows simultaneously in 1.5 m row spacing. This study analyzed five different machines and the following variables: Working Speed (km h-1); Effective Capacity (ha h-1), Drawbar Force (kgf), Draw Bar Power (in HP), Fuel Consumption (L h-1) and Costs (US$ ha-1) comparing them with the semi-mechanized system. This research also characterized the stalks for planting as viable gems number (%), non viable gems number (%) and billet length (m). And lastly the mechanized planting system is cheaper than the conventional one and none of the machines has an adequate mechanism for placing the right amount of sugar cane seed.