987 resultados para FIR digital filters
Resumo:
A novel bit level systolic array is presented that can be used as a building block in the construction of recursive digital filters. The circuit accepts bit-parallel input data, is pipelined at the bit level, and exhibits a very high throughput rate. The most important feature of the circuit is that it allows recursive operations to be implemented directly without incurring the large m cycle latency (where m is approximately the word length) normally associated with such systems. The use of this circuit in the construction of both first- and second-order IIR (infinite-impulse-response) filters is described.
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS-APPC). In the VS-APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS¡APPC). In the VS¡APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
An algorithm for adaptive IIR filtering that uses prefiltering structure in direct form is presented. This structure has an estimation error that is a linear function of the coefficients. This property greatly simplifies the derivation of gradient-based algorithms. Computer simulations show that the proposed structure improves convergence speed.
Resumo:
This paper addresses the problem of processing biological data, such as cardiac beats in the audio and ultrasonic range, and on calculating wavelet coefficients in real time, with the processor clock running at a frequency of present application-specified integrated circuits and field programmable gate array. The parallel filter architecture for discrete wavelet transform (DWT) has been improved, calculating the wavelet coefficients in real time with hardware reduced up to 60%. The new architecture, which also processes inverse DWT, is implemented with the Radix-2 or the Booth-Wallace constant multipliers. One integrated circuit signal analyzer in the ultrasonic range, including series memory register banks, is presented. © 2007 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In many movies of scientific fiction, machines were capable of speaking with humans. However mankind is still far away of getting those types of machines, like the famous character C3PO of Star Wars. During the last six decades the automatic speech recognition systems have been the target of many studies. Throughout these years many technics were developed to be used in applications of both software and hardware. There are many types of automatic speech recognition system, among which the one used in this work were the isolated word and independent of the speaker system, using Hidden Markov Models as the recognition system. The goals of this work is to project and synthesize the first two steps of the speech recognition system, the steps are: the speech signal acquisition and the pre-processing of the signal. Both steps were developed in a reprogrammable component named FPGA, using the VHDL hardware description language, owing to the high performance of this component and the flexibility of the language. In this work it is presented all the theory of digital signal processing, as Fast Fourier Transforms and digital filters and also all the theory of speech recognition using Hidden Markov Models and LPC processor. It is also presented all the results obtained for each one of the blocks synthesized e verified in hardware
Resumo:
A CMOS/SOI circuit to decode PWM signals is presented as part of a body-implanted neurostimulator for visual prosthesis. Since encoded data is the sole input to the circuit, the decoding technique is based on a double-integration concept and does not require dc filtering. Nonoverlapping control phases are internally derived from the incoming pulses and a fast-settling comparator ensures good discrimination accuracy in the megahertz range. The circuit was integrated on a 2 mu m single-metal SOI fabrication process and has an effective area of 2mm(2) Typically, the measured resolution of encoding parameter a was better than 10% at 6MHz and V-DD=3.3V. Stand-by consumption is around 340 mu W. Pulses with frequencies up to 15MHz and alpha = 10% can be discriminated for V-DD spanning from 2.3V to 3.3V. Such an excellent immunity to V-DD deviations meets a design specification with respect to inherent coupling losses on transmitting data and power by means of a transcutaneous link.
Resumo:
Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents parallel recursive algorithms for the computation of the inverse discrete Legendre transform (DPT) and the inverse discrete Laguerre transform (IDLT). These recursive algorithms are derived using Clenshaw's recurrence formula, and they are implemented with a set of parallel digital filters with time-varying coefficients.
Resumo:
A general approach is presented for implementing discrete transforms as a set of first-order or second-order recursive digital filters. Clenshaw's recurrence formulae are used to formulate the second-order filters. The resulting structure is suitable for efficient implementation of discrete transforms in VLSI or FPGA circuits. The general approach is applied to the discrete Legendre transform as an illustration.
Resumo:
Analog filters and direct digital filters are implemented using digital signal processing techniques. Specifically, Butterworth, Elliptic, and Chebyshev filters are implemented using the Motorola 56001 Digital Signal Processor by the integration of three software packages: MATLAB, C++, and Motorola's Application Development System. The integrated environment allows the novice user to design a filter automatically by specifying the filter order and critical frequencies, while permitting more experienced designers to take advantage of MATLAB's advanced design capabilities. This project bridges the gap between the theoretical results produced by MATLAB and the practicalities of implementing digital filters using the Motorola 56001 Digital Signal Processor. While these results are specific to the Motorola 56001 they may be extended to other digital signal processors. MATLAB handles the filter calculations, a C++ routine handles the conversion to assembly code, and the Motorola software compiles and transmits the code to the processor
Resumo:
El proyecto, “Aplicaciones de filtrado adaptativo LMS para mejorar la respuesta de acelerómetros”, se realizó con el objetivo de eliminar señales no deseadas de la señal de información procedentes de los acelerómetros para aplicaciones automovilísticas, mediante los algoritmos de los filtros adaptativos LMS. Dicho proyecto, está comprendido en tres áreas para su realización y ejecución, los cuales fueron ejecutados desde el inicio hasta el último día de trabajo. En la primera área de aplicación, diseñamos filtros paso bajo, paso alto, paso banda y paso banda eliminada, en lo que son los filtros de butterworth, filtros Chebyshev, de tipo uno como de tipo dos y filtros elípticos. Con esta primera parte, lo que se quiere es conocer, o en nuestro caso, recordar el entorno de Matlab, en sus distintas ecuaciones prediseñadas que nos ofrece el mencionado entorno, como también nos permite conocer un poco las características de estos filtros. Para posteriormente probar dichos filtros en el DSP. En la segunda etapa, y tras recordar un poco el entorno de Matlab, nos centramos en la elaboración y/o diseño de nuestro filtro adaptativo LMS; experimentado primero con Matlab, para como ya se dijo, entender y comprender el comportamiento del mismo. Cuando ya teníamos claro esta parte, procedimos a “cargar” el código en el DSP, compilarlo y depurarlo, realizando estas últimas acciones gracias al Visual DSP. Resaltaremos que durante esta segunda etapa se empezó a excitar las entradas del sistema, con señales provenientes del Cool Edit Pro, y además para saber cómo se comportaba el filtro adaptativo LMS, se utilizó señales provenientes de un generador de funciones, para obtener de esta manera un desfase entre las dos señales de entrada; aunque también se utilizó el propio Cool Edit Pro para obtener señales desfasadas, pero debido que la fase tres no podíamos usar el mencionado software, realizamos pruebas con el generador de funciones. Finalmente, en la tercera etapa, y tras comprobar el funcionamiento deseado de nuestro filtro adaptativo DSP con señales de entrada simuladas, pasamos a un laboratorio, en donde se utilizó señales provenientes del acelerómetro 4000A, y por supuesto, del generador de funciones; el cual sirvió para la formación de nuestra señal de referencia, que permitirá la eliminación de una de las frecuencias que se emitirá del acelerómetro. Por último, cabe resaltar que pudimos obtener un comportamiento del filtro adaptativo LMS adecuado, y como se esperaba. Realizamos pruebas, con señales de entrada desfasadas, y obtuvimos curiosas respuestas a la salida del sistema, como son que la frecuencia a eliminar, mientras más desfasado estén estas señales, mas se notaba. Solucionando este punto al aumentar el orden del filtro. Finalmente podemos concluir que pese a que los filtros digitales probados en la primera etapa son útiles, para tener una respuesta lo más ideal posible hay que tener en cuenta el orden del filtro, el cual debe ser muy alto para que las frecuencias próximas a la frecuencia de corte, no se atenúen. En cambio, en los filtros adaptativos LMS, si queremos por ejemplo, eliminar una señal de entre tres señales, sólo basta con introducir la frecuencia a eliminar, por una de las entradas del filtro, en concreto la señal de referencia. De esta manera, podemos eliminar una señal de entre estas tres, de manera que las otras dos, no se vean afectadas por el procedimiento. Abstract The project, "LMS adaptive filtering applications to improve the response of accelerometers" was conducted in order to remove unwanted signals from the information signal from the accelerometers for automotive applications using algorithms LMS adaptive filters. The project is comprised of three areas for implementation and execution, which were executed from the beginning until the last day. In the first area of application, we design low pass filters, high pass, band pass and band-stop, as the filters are Butterworth, Chebyshev filters, type one and type two and elliptic filters. In this first part, what we want is to know, or in our case, remember the Matlab environment, art in its various equations offered by the mentioned environment, as well as allows us to understand some of the characteristics of these filters. To further test these filters in the DSP. In the second stage, and recalling some Matlab environment, we focus on the development and design of our LMS adaptive filter; experimented first with Matlab, for as noted above, understand the behavior of the same. When it was clear this part, proceeded to "load" the code in the DSP, compile and debug, making these latest actions by the Visual DSP. Will highlight that during this second stage began to excite the system inputs, with signals from the Cool Edit Pro, and also for how he behaved the LMS adaptive filter was used signals from a function generator, to thereby obtain a gap between the two input signals, but also used Cool Edit Pro himself for phase signals, but due to phase three could not use such software, we test the function generator. Finally, in the third stage, and after checking the desired performance of our DSP adaptive filter with simulated input signals, we went to a laboratory, where we used signals from the accelerometer 4000A, and of course, the function generator, which was used for the formation of our reference signal, enabling the elimination of one of the frequencies to be emitted from the accelerometer. Note that they were able to obtain a behavior of the LMS adaptive filter suitable as expected. We test with outdated input signals, and got curious response to the output of the system, such as the frequency to remove, the more outdated are these signs, but noticeable. Solving this point with increasing the filter order. We can conclude that although proven digital filters in the first stage are useful, to have a perfect answer as possible must be taken into account the order of the filter, which should be very high for frequencies near the frequency cutting, not weakened. In contrast, in the LMS adaptive filters if we for example, remove a signal from among three signals, only enough to eliminate the frequency input on one of the inputs of the filter, namely the reference signal. Thus, we can remove a signal between these three, so that the other two, not affected by the procedure.
Resumo:
The fixed point implementation of IIR digital filters usually leads to the appearance of zero-input limit cycles, which degrade the performance of the system. In this paper, we develop an efficient Monte Carlo algorithm to detect and characterize limit cycles in fixed-point IIR digital filters. The proposed approach considers filters formulated in the state space and is valid for any fixed point representation and quantization function. Numerical simulations on several high-order filters, where an exhaustive search is unfeasible, show the effectiveness of the proposed approach.
Resumo:
El control, o cancelación activa de ruido, consiste en la atenuación del ruido presente en un entorno acústico mediante la emisión de una señal igual y en oposición de fase al ruido que se desea atenuar. La suma de ambas señales en el medio acústico produce una cancelación mutua, de forma que el nivel de ruido resultante es mucho menor al inicial. El funcionamiento de estos sistemas se basa en los principios de comportamiento de los fenómenos ondulatorios descubiertos por Augustin-Jean Fresnel, Christiaan Huygens y Thomas Young entre otros. Desde la década de 1930, se han desarrollado prototipos de sistemas de control activo de ruido, aunque estas primeras ideas eran irrealizables en la práctica o requerían de ajustes manuales cada poco tiempo que hacían inviable su uso. En la década de 1970, el investigador estadounidense Bernard Widrow desarrolla la teoría de procesado adaptativo de señales y el algoritmo de mínimos cuadrados LMS. De este modo, es posible implementar filtros digitales cuya respuesta se adapte de forma dinámica a las condiciones variables del entorno. Con la aparición de los procesadores digitales de señal en la década de 1980 y su evolución posterior, se abre la puerta para el desarrollo de sistemas de cancelación activa de ruido basados en procesado de señal digital adaptativo. Hoy en día, existen sistemas de control activo de ruido implementados en automóviles, aviones, auriculares o racks de equipamiento profesional. El control activo de ruido se basa en el algoritmo fxlms, una versión modificada del algoritmo LMS de filtrado adaptativo que permite compensar la respuesta acústica del entorno. De este modo, se puede filtrar una señal de referencia de ruido de forma dinámica para emitir la señal adecuada que produzca la cancelación. Como el espacio de cancelación acústica está limitado a unas dimensiones de la décima parte de la longitud de onda, sólo es viable la reducción de ruido en baja frecuencia. Generalmente se acepta que el límite está en torno a 500 Hz. En frecuencias medias y altas deben emplearse métodos pasivos de acondicionamiento y aislamiento, que ofrecen muy buenos resultados. Este proyecto tiene como objetivo el desarrollo de un sistema de cancelación activa de ruidos de carácter periódico, empleando para ello electrónica de consumo y un kit de desarrollo DSP basado en un procesador de muy bajo coste. Se han desarrollado una serie de módulos de código para el DSP escritos en lenguaje C, que realizan el procesado de señal adecuado a la referencia de ruido. Esta señal procesada, una vez emitida, produce la cancelación acústica. Empleando el código implementado, se han realizado pruebas que generan la señal de ruido que se desea eliminar dentro del propio DSP. Esta señal se emite mediante un altavoz que simula la fuente de ruido a cancelar, y mediante otro altavoz se emite una versión filtrada de la misma empleando el algoritmo fxlms. Se han realizado pruebas con distintas versiones del algoritmo, y se han obtenido atenuaciones de entre 20 y 35 dB medidas en márgenes de frecuencia estrechos alrededor de la frecuencia del generador, y de entre 8 y 15 dB medidas en banda ancha. ABSTRACT. Active noise control consists on attenuating the noise in an acoustic environment by emitting a signal equal but phase opposed to the undesired noise. The sum of both signals results in mutual cancellation, so that the residual noise is much lower than the original. The operation of these systems is based on the behavior principles of wave phenomena discovered by Augustin-Jean Fresnel, Christiaan Huygens and Thomas Young. Since the 1930’s, active noise control system prototypes have been developed, though these first ideas were practically unrealizable or required manual adjustments very often, therefore they were unusable. In the 1970’s, American researcher Bernard Widrow develops the adaptive signal processing theory and the Least Mean Squares algorithm (LMS). Thereby, implementing digital filters whose response adapts dynamically to the variable environment conditions, becomes possible. With the emergence of digital signal processors in the 1980’s and their later evolution, active noise cancellation systems based on adaptive signal processing are attained. Nowadays active noise control systems have been successfully implemented on automobiles, planes, headphones or racks for professional equipment. Active noise control is based on the fxlms algorithm, which is actually a modified version of the LMS adaptive filtering algorithm that allows compensation for the acoustic response of the environment. Therefore it is possible to dynamically filter a noise reference signal to obtain the appropriate cancelling signal. As the noise cancellation space is limited to approximately one tenth of the wavelength, noise attenuation is only viable for low frequencies. It is commonly accepted the limit of 500 Hz. For mid and high frequencies, conditioning and isolating passive techniques must be used, as they produce very good results. The objective of this project is to develop a noise cancellation system for periodic noise, by using consumer electronics and a DSP development kit based on a very-low-cost processor. Several C coded modules have been developed for the DSP, implementing the appropriate signal processing to the noise reference. This processed signal, once emitted, results in noise cancellation. The developed code has been tested by generating the undesired noise signal in the DSP. This signal is emitted through a speaker simulating the noise source to be removed, and another speaker emits an fxlms filtered version of the same signal. Several versions of the algorithm have been tested, obtaining attenuation levels around 20 – 35 dB measured in a tight bandwidth around the generator frequency, or around 8 – 15 dB measured in broadband.