966 resultados para FILAMENTOUS BACTERIA
Resumo:
Pectic substances are structural heteropolysaccharides that occur in the middle lamellae and primary cell walls of higher plants. They are composed of partially methyl-esterified galacturonic acid residues linked by alpha-1, 4-glycosidic bonds. Pectinolytic enzymes are complex enzymes that degrade pectic polymers and there are several classes of enzymes, which include pectin esterases, pectin and pectate lyases and polygalacturonases. Plants, filamentous fungi, bacteria and yeasts are able to produce pectinases. In the industrial world, pectinases are used in fruit juice clarification, in the production of wine, in the extraction of olive oil, fiber degumming and fermentation of tea, coffee and cocoa.
Resumo:
Flavobacterium columnare is the causative agent of columnaris disease in freshwater fish, implicated in skin and gill disease, often causing high mortality. The aim of this study was the isolation and characterization of Flavobacterium columnare in tropical fish in Brazil. Piracanjuba (Brycon orbignyanus), pacu (Piaractus mesopotamicus), tambaqui (Colossoma macropomum) and cascudo (Hypostomus plecostomus) were examined for external lesions showing signs of colunmaris disease such as greyish white spots, especially on the head, dorsal part and caudal fin of the fish. The sampling comprised 50 samples representing four different fish species selected for study. Samples for culture were obtained by skin and kidney scrapes with a sterile cotton swabs of columnaris disease fish and streaked onto Carlson and Pacha (1968) artificial culture medium (broth and solid) which were used for isolation. The strains in the liquid medium were Gram negative, long, filamentous, exhibited flexing movements (gliding motility), contained a large number of long slender bacteria and gathered into ‘columns'. Strains on the agar produced yellow-pale colonies, rather small, flat that had rhizoid edges. A total of four Flavobacterium columnare were isolated: 01 Brycon orbignyanus strain, 01 Piaractus mesopotamicus strain, 01 Colossoma macropomum strain, and 01 Hypostomus plecostomus strain. Biochemical characterization, with its absorption of Congo red dye, production of flexirubin-type pigments, H2S production and reduction of nitrates proved that the isolate could be classified as Flavobacterium columnare.
Resumo:
We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility ( het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer ( HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated ""gene dumps'' and, perhaps, simultaneously, as "" gene factories''.
Resumo:
Six pimarane-type diterpenes isolated from Viguiera arenaria Baker and two semi-synthetic derivatives were evaluated in vitro against a panel of representative microorganisms responsible for dental root canal infections. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Porphyromonas gingivalis, Prevotella nigrescens, Prevotella intermedia, Prevotella buccae, Fusobacterium nucleatum, Bacteroides fragilis, Actinomyces naeslundii, Actinomyces viscosus, Peptostreptococcus micros, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans. The compounds ent-pimara-8(14), 15-dien-19-oic acid, its sodium salt and ent-8(14), 15-pimaradien-3 beta-ol were the most active, displaying MIC values ranging from 1 to 10 mu g mL(-1). The results also allow us to conclude that minor structural differences among these diterpenes significantly influence their antimicrobial activity, bringing new perspectives to the discovery of new chemicals for use as a complement to instrumental endodontic procedures.
Resumo:
The goal of the study was to evaluate the ability of filamentous fungi to biotransform the pentacyclic triterpene lupeol. The microbial transformations were carried out in shake flasks in different media. Experiments were also run with control flasks. Samples of each culture were taken every 24 hours, extracted with ethyl acetate, and analyzed by GC-MS. The biotransformation of lupeol by Aspergillus ochraceus and Mucor rouxii afforded two compounds in each culture, which were detected in the cultures developed for more than seven days only in the Koch's K1 medium. The obtained data demonstrated that A. ochraceus is a good biocatalyst to introduce double bonds in the lupeol structure, whereas M. rouxii exhibits ability to biocatalyze oxygen insertions in that pentacyclic triterpene. Mass spectrometry was demonstrated to be an efficient analytical method to select promising biocatalysts for the compound investigated in this study. The biotransformation processes were influenced by the culture medium and incubation period. The obtained results open the perspective of using A. ochraceus and M. rouxii in pentacyclic triterpene biotransformations.
Resumo:
We examined the antibacterial activities of several types of propolis, including Africanized honey bee green propolis and propolis produced by meliponini bees. The antibacterial activity of green propolis against Micrococcus luteus and Staphylococcus aureus was superior to that of Melipona quadrifasciata and Scaptotrigona sp propolis. Only two samples of propolis (green propolis and Scaptotrigona sp propolis) were efficient against Escherichia coli. Melipona quadrifasciata propolis was better than green propolis and Scaptotrigona sp propolis against Pseudomonas aeruginosa. We concluded that these resins have potential for human and veterinary medicine.
Resumo:
Tick-borne bacteria were investigated in 10 free-living jaguars and their ticks in the Pantanal biome, Brazil. Jaguar sera were tested by indirect fluorescent antibody assays using Rickettsia rickettsii, Rickettsia parkeri, Rickettsia amblyommii, Rickettsia rhipicephali, Rickettsia felis, Rickettsia bellii, Ehrlichia canis, and Coxiella burnetii as crude antigens. All 10 jaguar sera reacted (titer >= 64) to at least one Rickettsia species; 4 and 3 sera reacted with E. canis and C. burnetii, respectively. One jaguar presented antibody titer to R. parkeri at least fourfold higher than those to any of the other five Rickettsia antigens, suggesting that this animal was infected by R. parkeri. Ticks collected from jaguars included the species Amblyomma cajennense, Amblyomma triste, and Rhipicephalus (Boophilus) microplus. No Rickettsia DNA was detected in jaguar blood samples, but an A. triste specimen collected on a jaguar was shown by PCR to be infected by R. parkeri. The blood of two jaguars and samples of A. triste, A. cajennense, and Amblyomma sp. yielded Ehrlichia DNA by PCR targeting the ehrlichial genes 16S rRNA and dsb. Partial DNA sequences obtained from PCR products resulted in a new ehrlichial strain, here designated as Ehrlichia sp. strain Jaguar. A partial DNA sequence of the 16S rRNA gene of this novel strain showed to be closest (99.0%) to uncultured strains of Ehrlichia sp. from Japan and Russia and 98.7% identical to different strains of Ehrlichia ruminantium. The ehrlichial dsb partial sequence of strain jaguar showed to be at most 80.7% identical to any Ehrlichia species or genotype available in GenBank. Through phylogenetic analysis, Ehrlichia sp. strain jaguar grouped in a cluster, albeit distantly, with different genotypes of E. ruminantium. Results highlight risks for human and animal health, considering that cattle ranching and ecotourism are major economic activities in the Pantanal region of Brazil.
Resumo:
Whole cells of hydrocarbon-degrading bacteria, isolated from polluted sediments in the Santos Estuary (Baixada Santista, Sao Paulo, Brazil), were able to catalyse oxidoreduction reactions with various substituted phenylethanols and acetophenones as substrates. A number of substituted phenylethanols were formed with high (>99 %) enantiomeric excess. The results of microbial oxidation of phenylethanols 2, 3, 5-7 by Acinetobacter sp. 6.4T and the reduction of acetophenones 1a-6a by Serratia marcescens 5.4T showed that the bacteria used as biocatalysts in this study present significant potential for exploitation in biotechnological processes. The reduction of prochiral acetophenones by Serratia marcescens 3.5T yielded optically active alcohols with 90-99 % enantiomeric excess, and Acinetobacter sp. 6.4T is a potential biocatalyst for the oxidation of alcohols.
Resumo:
Studies on keratinolytic microorganisms have been mainly related to their biotechnological applications and association with animal pathologies. However, these organisms have an ecological relevance to recycling keratinous residues in nature. This work aimed to select and identify new culturable feather-degrading bacteria isolated from soils of Brazilian Amazon forest and Atlantic forest. Bacteria that were isolated from temperate soils and bacteria from Amazonian basin soil were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified according to their morphological and biochemical characteristics. Also, molecular identification based on 165 rDNA gene sequencing was carried out. A total of 24 proteolytic and 20 feather-degrading isolates were selected; Most of the isolates were from the Bacillus genus (division Firmicutes), but one Aeromonas, two Serratia (gamma-Proteobacteria), and one Chryseobacterium (Cytophaga-Flavobacterium group). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Mangrove sediments are anaerobic ecosystems rich in organic matter. This environment is optimal for anaerobic microorganisms, such as sulphate-reducing bacteria and methanogenic archaea, which are responsible for nutrient cycling. In this study, the diversity of these two functional guilds was evaluated in a pristine mangrove forest using denaturing gradient gel electrophoresis (DGGE) and clone library sequencing in a 50 cm vertical profile sampled every 5.0 cm. DGGE profiles indicated that both groups presented higher richness in shallow samples (0-30 cm) with a steep decrease in richness beyond that depth. According to redundancy analysis, this alteration significantly correlated with a decrease in the amount of organic matter. Clone library sequencing indicated that depth had a strong effect on the selection of dissimilatory sulphate reductase (dsrB) operational taxonomic units (OTUs), as indicated by the small number of shared OTUs found in shallow (0.0 cm) and deep (40.0 cm) libraries. On the other hand, methyl coenzyme-M reductase (mcrA) libraries indicated that most of the OTUs found in the shallow library were present in the deep library. These results show that these two guilds co-exist in these mangrove sediments and indicate important roles for these organisms in nutrient cycling within this ecosystem.
Resumo:
This study aimed to evaluate the viability of using treated residuary water from the Biological Wastewater Treatment Plant of Ribeiro Preto to grow vegetables, through the characterization and quantification of parasites, coliforms, and heavy metals. Three equal cultivation areas were prepared. The first was irrigated with treated/chlorinated (0.2 mg L(-1)) wastewater, the second one with treated wastewater without chlorination, and the third site with potable water, which was the control group. The presence of Hymenolepis nana, Enterobius vermicularis, nematode larvae, and Entamoeba coli was verified in lettuce (Lactuca sativa) samples. Although nematode larvae were observed in rocket salad (Eruca sativa L.), no significant differences were found between the number of parasites and type of irrigation water used. No significant differences were found between the number of fecal coliforms in vegetables and the different types of irrigation. However, the vegetables irrigated with treated effluent without chlorination showed higher levels of fecal coliforms. The risk of pathogens is reduced with bleach addition to the treated effluent at 0.2 mg/L. Concentration of heavy metals in vegetables does not mean significant risks to human health, according with the parameters recommended by the World Health Organization.
Resumo:
In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0 +/- 0.7 mg O-2 1(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO42- ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO42- ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Two ureolytic strains, B. sphaericus LMG 22257 and Bacillus sp (I-001), were tested for their ability to consolidate sand by submitting them to two days` treatment using 10(7) viable cell concentrations of inocula and medium precipitation with calcium ions. The results showed that B. sphaericus LMG 22257 induced greater calcium carbonate formation. Both strains produced calcite and were able to consolidate sand. Tensile strength of consolidated sand was not a function of the amount of precipitated CaCO(3) but a linear function of the ratio bioconsolidation index (BC) defined as the ratio of CaCO(3) volume to initial sand porosity. A simple model to estimate the engineering benefits of consolidation is proposed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In vitro propagated plants are believed to be free of microbes. However, after 5 years of in vitro culture of pineapple plants, without evidence of microbial contamination, the use of culture-independent molecular approach [classifying heterogeneous nucleic acids amplified via universal and specific 16S rRNA gene by polymerase chain reaction (PCR)], and further analysis by denaturing gradient gel electrophoresis (DGGE) revealed endophytic bacteria in roots, young and mature leaves of such plants. The amplification of 16S rRNA gene (Bacteria domain) with the exclusion of the plant chloroplast DNA interference, confirmed the presence of bacterial DNA, from endophytic microorganisms within microplant tissues. PCR-DGGE analysis revealed clear differences on bacterial communities depending on plant organ. Group-specific DGGE analyses also indicated differences in the structures of Actinobacteria, Alphaproteobacteria and Betaproteobacteria communities in each part of plants. The results suggest the occurrence of a succession of bacterial communities colonizing actively the microplants organs. This study is the first report that brings together evidences that pineapple microplants, previously considered axenic, harbor an endophytic bacterial community encompassing members of Actinobacteria, Alphaproteobacteria and Betaproteobacteria group which is responsive to differences in organs due to plant development.
Resumo:
The aim of this study was to investigate the antioxidant responses of three bacteria (SD1. KD and K9) isolated from soil previously treated with the herbicides metolachlor and acetochlor. By 165 rRNA gene sequencing, we determined that SD1 is phylogenetically related to Enterobacter asburiae, while KD and K9 have divergent genomes that more closely resemble that of Enterobacter amnigenus. Decreased levels of lipid peroxidation were observed in SD1 and KD following treatment with 34 mM metolachlor or 62 mM acetochlor, respectively, indicating that both bacteria were able to adapt to an increase in ROS production. In the presence of 34 mM metolachlor or 62 mM acetochlor, all bacterial isolates exhibited increases in total catalase (CAT) activity (81% for SDI, 53% for KD and 59% for K9), whereas total SOD activity (assessed based on the profile and intensity of the bands) was slightly reduced when the bacteria were exposed to high concentrations of the herbicides (340 mM metolachlor or 620 mM acetochlor). This effect was due to a specific reduction in SOD IV (K9 and KD isolates) by 45% and 90%, respectively, and SOD V (SD1 isolate) isoenzymes by 60%. The most striking result was obtained in the SD1 isolate, where two novel isoenzymes of glutathione reductase (GR) that responded specifically to metolachlor were identified. In addition, acetochlor was shown to induce the expression of a new 57 kDa protein band in the K9 and KD isolates. The bacteria isolated from the herbicide-contaminated soil exhibited an efficient antioxidant system response at herbicide concentrations of up to 34 mM metolachlor or 62 mM acetochlor. These data suggest a mechanism for tolerance that may include the control of an imbalance in ROS production versus scavenging. The data suggest that specific isoenzymes of CAT and GR could be involved in this herbicide tolerance mechanism. (C) 2011 Elsevier Ltd. All rights reserved.