962 resultados para FAULT TOLERANCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi presenta e discute le sfide per ottenere sistemi di swarm robotis affidabili e tolleranti ai guasti e quindi anche alcuni metodi per rilevare anomalie in essi, in modo tale che ipotetiche procedure per il recupero possano essere affrontate, viene sottolineata inoltre l’ importanza di un’ analisi qualitativa dei guasti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analysis of the fault tolerance achieved by an autonomous, fully embedded evolvable hardware system, which uses a combination of partial dynamic reconfiguration and an evolutionary algorithm (EA). It demonstrates that the system may self-recover from both transient and cumulative permanent faults. This self-adaptive system, based on a 2D array of 16 (4×4) Processing Elements (PEs), is tested with an image filtering application. Results show that it may properly recover from faults in up to 3 PEs, that is, more than 18% cumulative permanent faults. Two fault models are used for testing purposes, at PE and CLB levels. Two self-healing strategies are also introduced, depending on whether fault diagnosis is available or not. They are based on scrubbing, fitness evaluation, dynamic partial reconfiguration and in-system evolutionary adaptation. Since most of these adaptability features are already available on the system for its normal operation, resource cost for self-healing is very low (only some code additions in the internal microprocessor core)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a theoretical-graph method of determining the fault tolerance degree of the computer network interconnections and nodes. Experimental results received from simulations of this method over a distributed computing network environment are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this paper was to find a simple solution for load balancing and fault tolerance in OSGi. The challenge was to implement a highly available web application such as a shopping cart system with load balancing and fault tolerance, without having to change the core of OSGi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault tolerance allows a system to remain operational to some degree when some of its components fail. One of the most common fault tolerance mechanisms consists on logging the system state periodically, and recovering the system to a consistent state in the event of a failure. This paper describes a general fault tolerance logging-based mechanism, which can be layered over deterministic systems. Our proposal describes how a logging mechanism can recover the underlying system to a consistent state, even if an action or set of actions were interrupted mid-way, due to a server crash. We also propose different methods of storing the logging information, and describe how to deploy a fault tolerant master-slave cluster for information replication. We adapt our model to a previously proposed framework, which provided common relational features, like transactions with atomic, consistent, isolated and durable properties, to NoSQL database management systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In data gathering wireless sensor networks, data loss often happens due to external faults such as random link faults and hazard node faults, since sensor nodes have constrained resources and are often deployed in inhospitable environments. However, already known fault tolerance mechanisms often bring new internal faults (e.g. out-of-power faults and collisions on wireless bandwidth) to the original network and dissipate lots of extra energy and time to reduce data loss. Therefore, we propose a novel Dual Cluster Heads Cooperation (CoDuch) scheme to tolerate external faults while introducing less internal faults and dissipating less extra energy and time. In CoDuch scheme, dual cluster heads cooperate with each other to reduce extra costs by sending only one copy of sensed data to the Base Station; also, dual cluster heads check errors with each other during the collecting data process. Two algorithms are developed based on the CoDuch scheme: CoDuch-l for tolerating link faults and CoDuch-b for tolerating both link faults and node faults; theory and experimental study validate their effectiveness and efficiency. © 2010 The Author Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless body area networks (WBANs), as a promising health-care system, can provide tremendous benefits for timely and continuous patient care and remote health monitoring. Owing to the restriction of communication, computation and power in WBANs, cloud-assisted WBANs, which offer more reliable, intelligent, and timely health-care services for mobile users and patients, are receiving increasing attention. However, how to aggregate the health data multifunctionally and efficiently is still an open issue to the cloud server (CS). In this paper, we propose a privacy-preserving and multifunctional health data aggregation (PPM-HDA) mechanism with fault tolerance for cloud-assisted WBANs. With PPM-HDA, the CS can compute multiple statistical functions of users' health data in a privacy-preserving way to offer various services. In particular, we first propose a multifunctional health data additive aggregation scheme (MHDA+) to support additive aggregate functions, such as average and variance. Then, we put forward MHDA as an extension of MHDA+ to support nonadditive aggregations, such as min/max, median, percentile, and histogram. The PPM-HDA can resist differential attacks, which most existing data aggregation schemes suffer from. The security analysis shows that the PPM-HDA can protect users' privacy against many threats. Performance evaluations illustrate that the computational overhead of MHDA+ is significantly reduced with the assistance of CSs. Our MHDA scheme is more efficient than previously reported min/max aggregation schemes in terms of communication overhead when the applications require large plaintext space and highly accurate data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fault-tolerant multiprocessor (ftmp) is a bus-based multiprocessor architecture with real-time and fault- tolerance features and is used in critical aerospace applications. A preliminary performance evaluation is of crucial importance in the design of such systems. In this paper, we review stochastic Petri nets (spn) and developspn-based performance models forftmp. These performance models enable efficient computation of important performance measures such as processing power, bus contention, bus utilization, and waiting times.