846 resultados para FACIAL EMOTIONS
Resumo:
The perceptive accuracy of university students was compared between men and women, from sciences and humanities courses, to recognize emotional facial expressions. emotional expressions have had increased interest in several areas involved with human interaction, reflecting the importance of perceptive skills in human expression of emotions for the effectiveness of communication. Two tests were taken: one was a quick exposure (0.5 s) of 12 faces with an emotional expression, followed by a neutral face. subjects had to tell if happiness, sadness, anger, fear, disgust or surprise was flashed, and each emotion was shown twice, at random. on the second test 15 faces with the combination of two emotional expressions were shown without a time limit, and the subject had to name one of the emotions of the previous list. in this study, women perceived sad expressions better while men realized more happy faces. there was no significant difference in other emotions detection like anger, fear, surprise, disgust. Students of humanities and sciences areas of both sexes, when compared, had similar capacities to perceive emotional expressions
Resumo:
Theory of mind ability has been associated with performance in interpersonal interactions and has been found to influence aspects such as emotion recognition, social competence, and social anxiety. Being able to attribute mental states to others requires attention to subtle communication cues such as facial emotional expressions. Decoding and interpreting emotions expressed by the face, especially those with negative valence, are essential skills to successful social interaction. The current study explored the association between theory of mind skills and attentional bias to facial emotional expressions. According to the study hypothesis, individuals with poor theory of mind skills showed preferential attention to negative faces over both non-negative faces and neutral objects. Tentative explanations for the findings are offered emphasizing the potential adaptive role of vigilance for threat as a way of allocating a limited capacity to interpret others’ mental states to obtain as much information as possible about potential danger in the social environment.
Resumo:
In this article, we present FACSGen 2.0, new animation software for creating static and dynamic threedimensional facial expressions on the basis of the Facial Action Coding System (FACS). FACSGen permits total control over the action units (AUs), which can be animated at all levels of intensity and applied alone or in combination to an infinite number of faces. In two studies, we tested the validity of the software for the AU appearance defined in the FACS manual and the conveyed emotionality of FACSGen expressions. In Experiment 1, four FACS-certified coders evaluated the complete set of 35 single AUs and 54 AU combinations for AU presence or absence, appearance quality, intensity, and asymmetry. In Experiment 2, lay participants performed a recognition task on emotional expressions created with FACSGen software and rated the similarity of expressions displayed by human and FACSGen faces. Results showed good to excellent classification levels for all AUs by the four FACS coders, suggesting that the AUs are valid exemplars of FACS specifications. Lay participants’ recognition rates for nine emotions were high, and comparisons of human and FACSGen expressions were very similar. The findings demonstrate the effectiveness of the software in producing reliable and emotionally valid expressions, and suggest its application in numerous scientific areas, including perception, emotion, and clinical and euroscience research.
Resumo:
Autism is a chronic pervasive neurodevelopmental disorder characterized by the early onset of social and communicative impairments as well as restricted, ritualized, stereotypic behavior. The endophenotype of autism includes neuropsychological deficits, for instance a lack of "Theory of Mind" and problems recognizing facial affect. In this study, we report the development and evaluation of a computer-based program to teach and test the ability to identify basic facially expressed emotions. 10 adolescent or adult subjects with high-functioning autism or Asperger-syndrome were included in the investigation. A priori the facial affect recognition test had shown good psychometric properties in a normative sample (internal consistency: rtt=.91-.95; retest reliability: rtt=.89-.92). In a prepost design, one half of the sample was randomly assigned to receive computer treatment while the other half of the sample served as control group. The training was conducted for five weeks, consisting of two hours training a week. The trained individuals improved significantly on the affect recognition task, but not on any other measure. Results support the usefulness of the program to teach the detection of facial affect. However, the improvement found is limited to a circumscribed area of social-communicative function and generalization is not ensured.
Resumo:
Anxiety and fear are often confounded in discussions of human emotions. However, studies of rodent defensive reactions under naturalistic conditions suggest anxiety is functionally distinct from fear. Unambiguous threats, such as predators, elicit flight from rodents (if an escape-route is available), whereas ambiguous threats (e.g., the odor of a predator) elicit risk assessment behavior, which is associated with anxiety as it is preferentially modulated by anti-anxiety drugs. However, without human evidence, it would be premature to assume that rodent-based psychological models are valid for humans. We tested the human validity of the risk assessment explanation for anxiety by presenting 8 volunteers with emotive scenarios and asking them to pose facial expressions. Photographs and videos of these expressions were shown to 40 participants who matched them to the scenarios and labeled each expression. Scenarios describing ambiguous threats were preferentially matched to the facial expression posed in response to the same scenario type. This expression consisted of two plausible environmental-scanning behaviors (eye darts and head swivels) and was labeled as anxiety, not fear. The facial expression elicited by unambiguous threat scenarios was labeled as fear. The emotion labels generated were then presented to another 18 participants who matched them back to photographs of the facial expressions. This back-matching of labels to faces also linked anxiety to the environmental-scanning face rather than fear face. Results therefore suggest that anxiety produces a distinct facial expression and that it has adaptive value in situations that are ambiguously threatening, supporting a functional, risk-assessing explanation for human anxiety.
Resumo:
Emotion-based analysis has raised a lot of interest, particularly in areas such as forensics, medicine, music, psychology, and human-machine interface. Following this trend, the use of facial analysis (either automatic or human-based) is the most common subject to be investigated once this type of data can easily be collected and is well accepted in the literature as a metric for inference of emotional states. Despite this popularity, due to several constraints found in real world scenarios (e.g. lightning, complex backgrounds, facial hair and so on), automatically obtaining affective information from face accurately is a very challenging accomplishment. This work presents a framework which aims to analyse emotional experiences through naturally generated facial expressions. Our main contribution is a new 4-dimensional model to describe emotional experiences in terms of appraisal, facial expressions, mood, and subjective experiences. In addition, we present an experiment using a new protocol proposed to obtain spontaneous emotional reactions. The results have suggested that the initial emotional state described by the participants of the experiment was different from that described after the exposure to the eliciting stimulus, thus showing that the used stimuli were capable of inducing the expected emotional states in most individuals. Moreover, our results pointed out that spontaneous facial reactions to emotions are very different from those in prototypic expressions due to the lack of expressiveness in the latter.
Resumo:
La hipótesis de retroalimentación facial planteada por Tomkins en 1962 sustenta que la activación de algunos músculos faciales envía información sensorial al cerebro y se induce entonces una experiencia emocional en el sujeto. Partiendo de dicha teoría y de investigaciones que la sustentan, el presente estudio se propuso confirmar el efecto de la emoción inducida a través de la retroalimentación facial sobre la evaluación de cinco tipos de humor en publicidad. Para ello se realizó un experimento con 60 hombres y 60 mujeres, que fueron asignados aleatoriamente a una de dos condiciones: estimulación de sonrisa –músculos hacia arriba- o inhibición de sonrisa –músculos hacía abajo-, mientras evaluaban 16 imágenes de publicidad de humor. A partir del análisis de los resultados se encontraron diferencias significativas entre las condiciones; en línea con la hipótesis formulada, los participantes expuestos a la condición estimulación de sonrisa –músculos hacía arriba- evaluaron más positivamente los comerciales. También se encontraron diferencias significativas en función del sexo y los tipos de humor evaluados. El estudio ofrece evidencia empírica de la teoría propuesta hace más de medio siglo y su efecto en el ámbito de la publicidad actual.
Resumo:
Faces are complex patterns that often differ in only subtle ways. Face recognition algorithms have difficulty in coping with differences in lighting, cameras, pose, expression, etc. We propose a novel approach for facial recognition based on a new feature extraction method called fractal image-set encoding. This feature extraction method is a specialized fractal image coding technique that makes fractal codes more suitable for object and face recognition. A fractal code of a gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. We show that fractal codes for an image are not unique and that we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters – which are faster to compute. Results on a subset of the XM2VTS database are presented.
Resumo:
Although marketers have a strong interest in finding ways to engage with consumers through mobile phones, the everyday experiential, or affective consumption practices surrounding this technology have received limited attention in the literature. To address this limitation, we used appraisal theory, which specifies it is the way individuals appraise situations or events that elicit emotions. We conducted an experience sampling method study to explore the emotions that individuals experience during their interactions with and through their mobile phones and what situations or events elicit these emotions. The preliminary findings show a number of significant relationships between emotions and specfic clusters of situations and events. Additionally, age and gender were also important indicators. The research contributes to a deeper understanding of the experiential nature of mobile information technologies through consumers’ everyday-consumption-related emotions and the situations and events that elicit them.
Resumo:
This paper describes a novel framework for facial expression recognition from still images by selecting, optimizing and fusing ‘salient’ Gabor feature layers to recognize six universal facial expressions using the K nearest neighbor classifier. The recognition comparisons with all layer approach using JAFFE and Cohn-Kanade (CK) databases confirm that using ‘salient’ Gabor feature layers with optimized sizes can achieve better recognition performance and dramatically reduce computational time. Moreover, comparisons with the state of the art performances demonstrate the effectiveness of our approach.
Resumo:
Acoustically, vehicles are extremely noisy environments and as a consequence audio-only in-car voice recognition systems perform very poorly. Seeing that the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem. However, implementing such an approach requires a system being able to accurately locate and track the driver’s face and facial features in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using this system, we present our results which show that using the Viola-Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose.
Resumo:
Gabor representations have been widely used in facial analysis (face recognition, face detection and facial expression detection) due to their biological relevance and computational properties. Two popular Gabor representations used in literature are: 1) Log-Gabor and 2) Gabor energy filters. Even though these representations are somewhat similar, they also have distinct differences as the Log-Gabor filters mimic the simple cells in the visual cortex while the Gabor energy filters emulate the complex cells, which causes subtle differences in the responses. In this paper, we analyze the difference between these two Gabor representations and quantify these differences on the task of facial action unit (AU) detection. In our experiments conducted on the Cohn-Kanade dataset, we report an average area underneath the ROC curve (A`) of 92.60% across 17 AUs for the Gabor energy filters, while the Log-Gabor representation achieved an average A` of 96.11%. This result suggests that small spatial differences that the Log-Gabor filters pick up on are more useful for AU detection than the differences in contours and edges that the Gabor energy filters extract.
Resumo:
When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.
Resumo:
In automatic facial expression detection, very accurate registration is desired which can be achieved via a deformable model approach where a dense mesh of 60-70 points on the face is used, such as an active appearance model (AAM). However, for applications where manually labeling frames is prohibitive, AAMs do not work well as they do not generalize well to unseen subjects. As such, a more coarse approach is taken for person-independent facial expression detection, where just a couple of key features (such as face and eyes) are tracked using a Viola-Jones type approach. The tracked image is normally post-processed to encode for shift and illumination invariance using a linear bank of filters. Recently, it was shown that this preprocessing step is of no benefit when close to ideal registration has been obtained. In this paper, we present a system based on the Constrained Local Model (CLM) which is a generic or person-independent face alignment algorithm which gains high accuracy. We show these results against the LBP feature extraction on the CK+ and GEMEP datasets.