949 resultados para F-ACTIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have reported in a variety of mammalian cells the reversible formation of a filamentous actin (F-actin)-enriched aggresome generated by the actin toxin jasplakinolide (Lázaro-Diéguez et al., J Cell Sci 2008; 121:1415-25). Notably, this F-actin aggresome (FAG) resembles in many aspects the pathological Hirano body, which frequently appears in some diseases such as Alzheimer's and alcoholism. Using selective inhibitors, we examined the molecular and subcellular mechanisms that participate in the clearance of the FAG. Chaperones, microtubules, proteasomes and autophagosomes all actively participate to eliminate the FAG. Here we compile and compare these results and discuss the involvement of each process. Because of its simplicity and high reproducibility, our cellular model could help to test pharmacological agents designed to interfere with the mechanisms involved in the clearance of intracellular bodies and, in particular, of those enriched in F-actin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinesins and myosins transport cargos to specific locations along microtubules and actin filaments, respectively. The relative contribution of the two transport systems for cell polarization varies extensively in different cell types, with some cells relying exclusively on actin-based transport while others mainly use microtubules. Using fission yeast, we asked whether one transport system can substitute for the other. In this organism, microtubules and actin cables both contribute to polarized growth by transporting cargos to cell poles, but with distinct roles: microtubules transport landmarks to label cell poles for growth and actin assembly but do not directly contribute to the growth process [1]. Actin cables serve as tracks for myosin V delivery of growth vesicles to cell poles [2-4]. We engineered a chimera between the motor domain of the kinesin 7 Tea2 and the globular tail of the myosin V Myo52, which we show transports Ypt3, a myosin cargo receptor, to cell poles along microtubules. Remarkably, this chimera restores polarized growth and viability to cells lacking actin cables. It also bypasses the normal microtubule-dependent marking of cell poles for polarized growth, but not for other functions. Thus, a synthetic motor protein successfully redirects cargos along a distinct cytoskeletal route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bcl10 plays an essential role in the adaptive immune response, because Bcl10-deficient lymphocytes show impaired Ag receptor-induced NF-kappaB activation and cytokine production. Bcl10 is a phosphoprotein, but the physiological relevance of this posttranslational modification remains poorly defined. In this study, we report that Bcl10 is rapidly phosphorylated upon activation of human T cells by PMA/ionomycin- or anti-CD3 treatment, and identify Ser(138) as a key residue necessary for Bcl10 phosphorylation. We also show that a phosphorylation-deficient Ser(138)/Ala mutant specifically inhibits TCR-induced actin polymerization yet does not affect NF-kappaB activation. Moreover, silencing of Bcl10, but not of caspase recruitment domain-containing MAGUK protein-1 (Carma1) induces a clear defect in TCR-induced F-actin formation, cell spreading, and conjugate formation. Remarkably, Bcl10 silencing also impairs FcgammaR-induced actin polymerization and phagocytosis in human monocytes. These results point to a key role of Bcl10 in F-actin-dependent immune responses of T cells and monocytes/macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The network of actin cytoskeleton is composed of actin filaments (F-actin) that are made by polymerisation of actin monomers and actin binding proteins. It is required for growth and morphogenesis of eukaryotic cells. The labelling of F-actin with constitutively expressed GFP-Talin (Kost et al., 1998) reveals the organisation of cellular actin networks in plants. Due to the lack of information on actin cytoskeleton through gametophytic development of the model moss plant Physcornitrella patens, stable transgenic lines overexpressing GFP-Talin were generated to detect F-actin structures. It is shown that the 35S promoter driven expression is not suitable for F-actin labelling in all cells. When it is replaced by the inducible heat-shock promoter Gmhsp17.3 from soybean, one hour mild heat stress at 37°C followed by recovery at 25°C is enough to induce efficient and transient labelling in all tissues without altering cellular morphology. The optimal observations of F-actin structures at different stages of moss development can be done between 12-18 hours after the induction. By using confocal microscopy, we demonstrate that stellated actin arrays were densely accumulated at the growing tip in regenerating protoplasts, apical protonemal cells and rhizoids and connected with a fine dispersed F-actin mesh. Following three-dimensional growth, the cortical star-like structures are widespread in the meristematic cells of developing bud and young gametophores. On the contrary, undulating networks of actin cables are found at the final stage of cell differentiation. During redifferentiation of mature leaf cells into protonemal filaments the rather stagnant web of actin cables is replaced by diffuse actin meshwork. In eukaryotes, nucleation of the actin monomers prior to their polymerization is driven by the seven-subunit ARP2/3 complex and formins. We cloned the gene encoding the ARP3 subunit of P. patens and generated arp3 mutants of the moss through gene disruption. The knockout of ARP3 affects the elongation of chloronemal cells and blocks further differentiation of caulonemal cells and rhizoids, and the gametophores are slightly stunted compared to wild-type. The arp mutants were created in the heat-shock inducible GFP-Talin strains allowing us to visualise a disorganised actin network and a lack of star-like actin cytoskeleton arrays. We conclude that ARP2/3 dependent nucleation of actin filaments is critical for the growth of filamentous cells, which in turn influences moss colonization. In complementation assays, the overexpression of Physcomitrella and Arab idopsis ARP3 genes in the moss arp3 mutant results in full recovery of wild type phenotype. In contrast the ARP3 subunit of fission yeast is not able to complement the moss arp3 mutant of moss indicating that regulation of the ARP2/3 dependent actin nucleation diverged in different kingdoms. RESUME Le réseau d'actine est composé de filaments de F-actine et d'un ensemble de protéines s'y attachant (Actin binding proteins). Le réseau d'actine est nécessaire à la croissance et à la morphogenèse de toutes les cellules eucaryotes. Chez les plantes, le marquage ainsi que l'étude de l'organisation du réseau d'actine ont été réalisés en utilisant une fusion GFP-Talin (Kost et al., 1998) exprimée sous le control d'un promoteur constitutif. Afin d'étudier les structures F-actine dans les cellules de Physcomitrella Patens et pour combler le manque d'information sur le développement des gamétophores, des lignées transgéniques stables surexprimant GFP-Talin ont été crées. Nous avons démontré que l'utilisation du promoteur 35S est inadéquate pour le marquage complet et homogène des filaments d'actine dans toutes les cellules de P. patens. Par contre, l'utilisation du promoteur inductible Gmhsp17.3 nous a permis de réaliser un marquage transitoire et général dans tous les tissus de la mousse. Une heure de choc thermique à 37°C suivis d'un temps de récupération de 12-18h à 25°C sont les conditions optimales (sans dommages cellulaires) pour l'observation des structures F-actine à différentes étapes de développement de la mousse. En utilisant la microscopie confocale, nous avons observé l'existence de structures F-actine accumulées en forme d'étoiles. Ces structures, qui sont liées au réseau de microfilaments d'actine, ont été observées dans les protoplastes en régénération, les cellules des protonema apicales ainsi que dans les rhizoïdes. En suivant la croissance tridimensionnelle, ces structures en étoiles ont été observées dans les cellules meristématiques des bourgeons et des jeunes gamétophores. Par contre, dans les cellules différentiées ces structures laissent place à des réseaux de câbles épais. Nous avons également remarqué que durant la redifferentiation des cellules foliaires le réseau de câbles de F-actine est remplacé par un réseau de F-actine diffus. Dans les cellules eucaryotes, la nucléation des filaments d'actirie précédant leur polymérisation est contrôlé par sept sous unités du complexe ARP2/3 et par des formines. Nous avons isolé le gène codant pour la sous unité ARP3 de P. patens et nous avons crée des mutants arp3 par intégration ciblée (Knockout). L'élongation des cellules chloronema est clairement affectée dans les mutants arp3. La différentiation des caulonemata et des rhizoïdes est bloquée et les gametophores sont légèrement plus courts comparé au type sauvage. A fin d'étudier l'organisation des filaments d'actines dans les mutants arp3, nous avons aussi réalisé un arp3-knockout dans la lignée Hsp-GFP-Talin. La nouvelle lignée générée nous a permis de visualiser une désorganisation du réseau d'actine et une absence complète de structures de F-actine accumulée en forme d'étoiles. Les résultats obtenus nous amènent à conclure que la nucléation (ARP2/3 dépendante) des filaments d'actine est indispensable à la croissance des cellules filamenteuses. Par conséquent, les filaments d'actine semblent avoir un rôle dans la colonisation des milieux par les mousses. Nous avons également procédé à des essais de complémentation du mutant arp3. La surexpression des gènes ARP3 de Physcomitrella et d'Arabidopsis dans les cellules du mutant arp3 rétabli complètement le phénotype WT. Par contre, le gène ARP3 des levures n'est pas suffisant pour complémenter la même mutation dans les cellules de mousses. Ce résultat démontre que les mécanismes de régulation de la nucléation des filaments d'actine (ARP2/3 dépendante) sont différents entre les différents groupes d'eucaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubule-associated protein 1B is an essential protein during brain development and neurite outgrowth and was studied by several assays to further characterize actin as a major interacting partner. Tubulin and actin co-immunoprecipitated with MAP1B at similar ratios throughout development. Their identity was identified by mass spectrometry and was confirmed by Western blots. In contrast to previous reports, the MAP1B-actin interaction was not dependent on the MAP1B phosphorylation state, since actin was precipitated from brain tissue throughout development at similar ratios and equal amounts were precipitated before and after dephosphorylation with alkaline phosphatase. MAP1B heavy chain was able to bind actin directly and therefore the N-terminal part of MAP1B heavy chain must also contain an actin-binding site. The binding force of this interaction was measured by atomic force microscopy and values were in the same range as those of MAP1B binding to tubulin or that measured in MAP1B self-aggregation. Aggregation was confirmed by negative staining and electron microscopy. Experiments including COS-7 cells, PC12 cells, cytochalasin D and immunocytochemistry with subsequent confocal laser microscopy, suggested that MAP1B may bind to actin but has no obvious microfilament stabilizing effect. We conclude, that the MAP1B heavy chain has a microtubule-stabilization effect, and contains an actin-binding site that may play a role in the crosslinking of actin and microtubules, a function that may be important in neurite elongation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Citrobacter rodentium is a natural mouse pathogen that is genetically closelyrelated to the human enteric pathogens enteropathogenic and enterohemorrhagic E. coli.Among the repertoire of conserved virulence factors that these pathogens deliver via typeIII secretion, Tir and EspF are responsible for the formation of characteristic actin-richpedestals and disruption of tight junction integrity, respectively. There is evidence In Vitrothese effectors accomplish this, at least in part, by subverting the normal host cellularfunctions of N-WASP, a critical regulator of branched chain actin assembly. Although NWASPhas been shown to be involved in pedestal formation In Vitro, the requirements ofN-WASP-mediated actin pedestals for intestinal colonization by attaching/effacing (A/E)pathogens In Vivo is not known. Furthermore, it is not known whether N-WASP is requiredfor EspF-mediated tight junction disruption. Methods: To investigate the role of N-WASPin the gut epithelium, we generated mice with intestine-specific deletion of N-WASP(iNWKO), by mating mice homozygous for a floxed N-WASP allele (N-WASPL2L/L2L) tomice expressing Cre recombinase under the villin promoter. Separately housed groups ofWT and iNWKO mice were inoculated with 5x108 GFP-expressing C. rodentium by intragastriclavage. Stool was collected 2, 4, 7, and 12 days after infection, and recoverablecolony forming units (CFUs) of C. rodentium were quantified by plating serial dilutions ofhomogenized stool on MacConkey's agar. GFP+ colonies were counted after 24 hoursincubation at 37°C. The presence of actin pedestals was investigated by electron microscopy(EM), and tight junction morphology was assessed by immunofluorescence staining ofoccludin, ZO-1 and claudin-2. Results: C. rodentium infection did not result in mortalityin WT or iNWKO mice. Compared to controls, iNWKO mice exhibited higher levels ofbacterial shedding during the first 4 days of infection (day 4 average: WT 5.2x104 CFU/gvs. iNWKO 4.7x105 CFU/g, p=0.08), followed by a more rapid clearance of C. rodentium, (day7-12 average: WT 2x106 CFU/g vs. iNWKO 2.7x105, p=0.01). EM and immunofluorescencerevealed the complete lack of actin pedestals in iNWKO mice and no mucosa-associatedGFP+ C. rodentium by day 7. WT controls exhibited tight junction disruption, reflected byaltered distribution of ZO-1, whereas iNWKO mice had no change in the pattern of ZO-1.Conclusion: Intestinal N-WASP is required for actin pedestal formation by C. rodentium InVivo, and ablation of N-WASP is associated with more rapid bacterial clearance and decreasedability of C. rodentium to disrupt intercellular junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. However, disruption of both actin cables and exocyst led to isotropic growth. Exocytic vesicles localized to cell tips in single mutants but were dispersed in double mutants. In contrast, a marker for active Cdc42, a major polarity landmark, localized to discreet cortical sites even in double mutants. Localization and photobleaching studies show that the exocyst subunits Sec6 and Sec8 localize to cell tips largely independently of the actin cytoskeleton, but in a cdc42 and phospholipid phosphatidylinositol 4,5-bisphosphate (PIP₂)-dependent manner. Thus in fission yeast long-range cytoskeletal transport and PIP₂-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seven subunit Arp2/3 complex is a highly conserved nucleation factor of actin microfilaments. We have isolated the genomic sequence encoding a putative Arp3a protein of the moss Physcomitrella patens. The disruption of this ARP3A gene by allele replacement has generated loss-of-function mutants displaying a complex developmental phenotype. The loss-of function of ARP3A gene results in shortened, almost cubic chloronemal cells displaying affected tip growth and lacking differentiation to caulonemal cells. In moss arp3a mutants, buds differentiate directly from chloronemata to form stunted leafy shoots having differentiated leaves similar to wild type. Yet, rhizoids never differentiate from stem epidermal cells. To characterize the F-actin organization in the arp3a-mutated cells, we disrupted ARP3A gene in the previously described HGT1 strain expressing conditionally the GFP-talin marker. In vivo observation of the F-actin cytoskeleton during P. patens development demonstrated that loss-of-function of Arp3a is associated with the disappearance of specific F-actin cortical structures associated with the establishment of localized cellular growth domains. Finally, we show that constitutive expression of the P. patens Arp3a and its Arabidopsis thaliana orthologs efficiently complement the mutated phenotype indicating a high degree of evolutionary conservation of the Arp3 function in land plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to assess stimulated latex flow from rubber trees (Hevea brasiliensis) with saturated macrolide (latrunculin A), 1, 5, and 10% potassium iodide in 2% methylcellulose compared with 0.3% ethylene in 2% methylcellulose (check) and 2% methylcellulose (blank). Latex output and contents of pure rubber, total solid, sucrose, inorganic phosphorus, thiol, and Mg2+ were measured. The treatments containing 1% KI or saturated macrolide increased latex yields compared to the blank with 2% methylcellulose alone. The 1% KI or saturated macrolide treatments were equal to that of 0.3% ethylene check treatment. However, 5 and 10% KI were harmful to bark of rubber trees, even caused prolonged tapping panel dryness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dominant missense mutations in FLNB, encoding the actin-cross linking protein filamin B (FLNB), cause a broad range of skeletal dysplasias with varying severity by an unknown mechanism. Here these FLNB mutations are shown to cluster in exons encoding the actin-binding domain (ABD) and filamin repeats surrounding the flexible hinge 1 region of the FLNB rod domain. Despite being positioned in domains that bind actin, it is unknown if these mutations perturb cytoskeletal structure. Expression of several full-length FLNB constructs containing ABD mutations resulted in the appearance of actin-containing cytoplasmic focal accumulations of the substituted protein to a degree that was correlated with the severity of the associated phenotypes. In contrast, study of mutations leading to substitutions in the FLNB rod domain that result in the same phenotypes as ABD mutations demonstrated that with only one exception disease-associated substitutions, surrounding hinge 1 demonstrated no tendency to form actin-filamin foci. The exception, a substitution in filamin repeat 6, lies within a region previously implicated in filamin-actin binding. These data are consistent with mutations in the ABD conferring enhanced actin-binding activity but suggest that substitutions affecting repeats near the flexible hinge region of FLNB precipitate the same phenotypes through a different mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rho GTPases regulate the actin cytoskeleton in all eukaryotes. Fission yeast Cdc42 is involved in actin cable assembly and formin For3 regulation. We isolated cdc42-879 as a thermosensitive strain with actin cable and For3 localization defects. In a multicopy suppressor screening, we identified pob1(+) as suppressor of cdc42-879 thermosensitivity. Pob1 overexpression also partially restores actin cables and localization of For3 in the mutant strain. Pob1 interacts with Cdc42 and this GTPase regulates Pob1 localization and/or stability. The C-terminal pleckstrin homology (PH) domain of Pob1 is required for Cdc42 binding. Pob1 also binds to For3 through its N-terminal sterile alpha motif (SAM) domain and contributes to the formin localization at the cell tips. The previously described pob1-664 mutant strain (Mol. Biol. Cell. 10, 2745-2757, 1999), which carries a mutation in the PH domain, as well as pob1 mutant strains in which Pob1 lacks the N-terminal region (pob1DeltaN) or the SAM domain (pob1DeltaSAM), have cytoskeletal defects similar to that of cdc42-879 cells. Expression of constitutively active For3DAD* partially restores actin organization in cdc42-879, pob1-664, pob1DeltaN, and pob1DeltaSAM. Therefore, we propose that Pob1 is required for For3 localization to the tips and facilitates Cdc42-mediated relief of For3 autoinhibition to stimulate actin cable formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In peripheral tissues circadian gene expression can be driven either by local oscillators or by cyclic systemic cues controlled by the master clock in the brain's suprachiasmatic nucleus. In the latter case, systemic signals can activate immediate early transcription factors (IETFs) and thereby control rhythmic transcription. In order to identify IETFs induced by diurnal blood-borne signals, we developed an unbiased experimental strategy, dubbed Synthetic TAndem Repeat PROMoter (STAR-PROM) screening. This technique relies on the observation that most transcription factor binding sites exist at a relatively high frequency in random DNA sequences. Using STAR-PROM we identified serum response factor (SRF) as an IETF responding to oscillating signaling proteins present in human and rodent sera. Our data suggest that in mouse liver SRF is regulated via dramatic diurnal changes of actin dynamics, leading to the rhythmic translocation of the SRF coactivator Myocardin-related transcription factor-B (MRTF-B) into the nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which demonstrates Cdc42 dynamics and polarization independent of these pathways. Furthermore, an engineered Cdc42 allele targeted to the membrane independently of these recycling pathways by an amphipathic helix is viable and polarizes spontaneously to multiple sites in fission and budding yeasts. We show that Cdc42 is highly mobile at the membrane and accumulates at sites of activity, where it displays slower mobility. By contrast, a near-immobile transmembrane domain-containing Cdc42 allele supports viability and polarized activity, but does not accumulate at sites of activity. We propose that Cdc42 activation, enhanced by positive feedback, leads to its local accumulation by capture of fast-diffusing inactive molecules.