965 resultados para Extracellular recording
Resumo:
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 degrees C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 degrees C, with a t(50) of 45 min at 60 degrees C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl alpha-D-maltoside, methyl-alpha-D-glucopyranoside, pullulan, alpha- and beta-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in alpha-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-alpha-D-glucan glucohydrolase).
Resumo:
We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl(-)] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute a parts per thousand 85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute a parts per thousand 22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.
Resumo:
The filamentous fungus A. phoenicis produced high levels of beta-D-fructofuranosidase (FFase) when grown for 72 hrs under Solid-State Fermentation (SSF), using soy bran moistened with tap water (1:0.5 w/v) as substrate/carbon source. Two isoforms (I and II) were obtained, and FFase II was purified 18-fold to apparent homogeneity with 14% recovery. The native molecular mass of the glycoprotein (12% of carbohydrate content) was 158.5 kDa with two subunits of 85 kDa estimated by SDS-PAGE. Optima of temperature and pH were 55 degrees C and 4.5. The enzyme was stable for more than 1 hr at 50 degrees C and was also stable in a pH range from 7.0 to 8.0. FFase II retained 80% of activity after storage at 4 degrees C by 200 hrs. Dichroism analysis showed the presence of random and beta-sheet structure. A. phoenicis FFase II was activated by Mn(2+), Mg(2+) and Co(2+), and inhibited by Cu(2+), Hg(2+) and EDTA. The enzyme hydrolyzed sucrose, inulin and raffinose. K(d) and V(max) values were 18 mM and 189 U/mg protein using sucrose as substrate.
Resumo:
Serotonin (5-HT) plays a key role in the neural circuitry mediating unconditioned and conditioned fear responses related to panic and generalized anxiety disorders. The basolateral nucleus of the amygdala (BLA) and the dorsal periaqueductal gray (dPAG) appear to be mainly involved in these conditions. The aim of this study was to measure the extracellular level of 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA) in the BLA and dPAG during unconditioned and conditioned fear states using in vivo microdialysis procedure. Thus, for the unconditioned fear test, animals were chemically stimulated in the dPAG with semicarbazide, an inhibitor of the gamma-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase. For the conditioned fear test, animals were subjected to a contextual conditioned fear paradigm using electrical footshock as the unconditioned stimulus. The results show that the 5-HT and 5-HIAA level in the BLA and dPAG did not change during unconditioned fear, whereas 5-HT concentration, but not 5-HIAA concentration, increased in these brain areas during conditioned fear. The present study showed that the 5-HT system was activated during conditioned fear, whereas it remained unchanged during unconditioned fear, supporting the hypothesis that 5-HT has distinct roles in conditioned and unconditioned fear (dual role of 5-HT in anxiety disorders). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.
Resumo:
The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by N-omega-nitro-L-arginine methyl ester (L-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1 similar to 5 mg/ml for 4 wk) and treated or not with L-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF(2 alpha) expression in the alveolar septa compared with controls (P < 0.05). L-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses (P < 0.01), nNOS- and iNOS-positive cells, elastic fiber content (P < 0.001), and isoprostane-8-PGF(2 alpha) in the alveolar septa (P < 0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.
Resumo:
The regulation of putrescine transport in difluoromethylornithine-treated B16 melanoma cells by extracellular Ca2+ has been investigated. It was found that physiological concentrations of Ca2+ were essential for optimum uptake of putrescine and spermidine. Mg2+, albeit at higher concentrations, also could potentiate polyamine transport. The maximum rate of putrescine uptake increased from 1698 +/-: 67 pmol/min/mg DNA in the absence of Ca2+ to 3100 +/- 98 pmol/min/mg DNA in the presence of 0.5 mM Ca2+. There was no change in K-m. While Ca2+ enhanced transport of both putrescine and spermidine it did not affect the uptake of deoxyglucose, thymidine or leucine. Putrescine did not alter Ca2+ fluxes suggesting that the two cations do not share a common transport system. The effects of Ca2+ on putrescine uptake appeared to be mediated extracellularly firstly because Ca2+ did not potentiate putrescine uptake in the presence of A23187 and secondly, because the effects of Ca2+ were completely inhibited by the lanthanide Tb3+, which binds to calcium-dependent proteins and does not readily cross biological membranes. Ca2+ did not affect putrescine transport in the absence of extracellular Na+. Moreover, the rate of putrescine uptake in the absence of Ca2+ was similar to that in the absence of extracellular Na+. The results from this study indicate that polyamine transport is stimulated by extracellular Ca2+ and suggest that Ca2+ is required for activity of the Na+-dependent transporter only. This transporter appears to possess a regulatory binding site for divalent cations. (C) 1997 Elsevier Science Ltd.
Resumo:
The impact of genetic factors on asthma is well recognized but poorly understood. We tested the hypothesis that different mouse strains present different lung tissue strip mechanics in a model of chronic allergic asthma and that these mechanical differences may be potentially related to changes of extracellular matrix composition and/or contractile elements in lung parenchyma. Oscillatory mechanics were analysed before and after acetylcholine (ACh) in C57BL/10, BALB/c, and A/J mice, subjected or not to ovalbumin sensitization and challenge. In controls, tissue elastance (E) and resistance (R), collagen and elastic fibres` content, and alpha-actin were higher in A/J compared to BALB/c mice, which, in turn, were more elevated than in C57BL/10. A similar response pattern was observed in ovalbumin-challenged animals irrespective of mouse strain. E and R augmented more in ovalbumin-challenged A/J [E: 22%, R: 18%] than C57BL/10 mice [E: 9.4%, R: 11 %] after ACh In conclusion, lung parenchyma remodelled differently yielding distinct in vitro mechanics according to mouse strain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
There is an intimate relationship between the extracellular matrix (ECM) and smooth muscle cells within the airways. Few studies have comprehensively assessed the composition of different ECM components and its regulators within the airway smooth muscle (ASM) in asthma. With the aid of image analysis, the fractional areas of total collagen and elastic fibres were quantified within the ASM of 35 subjects with fatal asthma (FA) and compared with 10 nonfatal asthma (NFA) patients and 22 nonasthmatic control cases. Expression of collagen I and III, fibronectin, versican, matrix metalloproteinase (MMP)-1, -2, -9 and -12 and tissue inhibitor of metalloproteinase-1 and -2 was quantified within the ASM in 22 FA and 10 control cases. In the large airways of FA cases, the fractional area of elastic fibres within the ASM was increased compared with NFA and controls. Similarly, fibronectin, MMP-9 and MMP-12 were increased within the ASM in large airways of FA cases compared with controls. Elastic fibres were increased in small airways in FA only in comparison with NFA cases. There is altered extracellular matrix composition and a degradative environment within the airway smooth muscle in fatal asthma patients, which may have important consequences for the mechanical and synthetic functions of airway smooth muscle.
Resumo:
Oral tolerance attenuates changes in in vitro lung tissue mechanics and extracellular matrix remodeling induced by chronic allergic inflammation in guinea pigs. J Appl Physiol 104: 1778-1785, 2008. First published April 3, 2008; doi:10.1152/japplphysiol.00830.2007.-Recent studies emphasize the presence of alveolar tissue inflammation in asthma. Immunotherapy has been considered a possible therapeutic strategy for asthma, and its effect on lung tissue had not been previously investigated. Measurements of lung tissue resistance and elastance were obtained before and after both ovalbumin and acetylcholine challenges. Using morphometry, we assessed eosinophil and smooth muscle cell density, as well as collagen and elastic fiber content, in lung tissue from guinea pigs with chronic pulmonary allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/ml; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). The ovalbumin-exposed animals presented an increase in baseline and in postchallenge resistance and elastance related to baseline, eosinophil density, and collagen and elastic fiber content in lung tissue compared with controls. Baseline and post-ovalbumin and acetylcholine elastance and resistance, eosinophil density, and collagen and elastic fiber content were attenuated in OT1 and OT2 groups compared with the OVA group. Our results show that inducing oral tolerance attenuates lung tissue mechanics, as well as eosinophilic inflammation and extracellular matrix remodeling induced by chronic inflammation.
Resumo:
Background: Smooth muscle content is increased within the airway wall in patients with asthma and is likely to play a role in airway hyperresponsiveness. However, smooth muscle cells express several contractile and structural proteins, and each of these proteins may influence airway function distinctly. Objective: We examined the expression of contractile and structural proteins of smooth muscle cells, as well as extracellular matrix proteins, in bronchial biopsies of patients with asthma, and related these to lung function, airway hyperresponsiveness, and responses to deep inspiration. Methods: Thirteen patients with asthma (mild persistent, atopic, nonsmoking) participated in this cross-sectional study. FEV1 % predicted, PC20 methacholine, and resistance of the respiratory system by the forced oscillation technique during tidal breathing and deep breath were measured. Within 1 week, a bronchoscopy was performed to obtain 6 bronchial biopsies that were immunuhistochemically stained for alpha-SM-actin, desmin, myosin light chain kinase (MLCK), myosin, calponin, vimentin, elastin, type III collagen, and fibronectin. The level of expression was determined by automated densitometry. Results: PC20 methacholine was inversely related to the expression of alpha-smooth muscle actin (r = -0.62), desmin (r = -0.56), and elastin (r = -0.78). In addition, FEV1% predicted was positively related and deep inspiration-induced bronchodilation inversely related to desmin (r = -0.60), MLCK (r = -0.60), and calponin (r = -0.54) expression. Conclusion: Airway hyperresponsiveness, FEV1% predicted, and airway responses to deep inspiration are associated with selective expression of airway smooth muscle proteins and components of the extracellular matrix.
Resumo:
Debaryomyces hansenii cells cultivated on galactose produced extracellular and intracellular alpha-galactosidases, which showed 54.5 and 54.8 kDa molecular mass (MALDI-TOF), 60 and 61 kDa (SDS-PAGE) and 5.15 and 4.15 pI values, respectively. The extracellular and intracellular deglycosylated forms presented 36 and 40 kDa molecular mass, with 40 and 34% carbohydrate content, respectively. The N-terminal sequences of the alpha-galactosidases were identical. Intracellular alpha-galactosidase showed smaller thermostability when compared to the extracellular enzyme. D. hansenii UFV-1 extracellular alpha-galactosidase presented higher k(cat) than the intracellular enzyme (7.16 vs 3.29 s(-1), respectively) for the p-nitrophenyl-alpha-D-galactopyranoside substrate. The K(m) for hydrolysis of pNP alpha Gal, melibiose, stachyose, and raffinose were 0.32, 2.12, 10.8, and 32.8 mM, respectively. The intracellular enzyme was acompetitively inhibited by galactose (K(i) = 0.70 mM), and it was inactivated by Cu(II) and Ag(I). Enzyme incubation with soy milk for 6 h at 55 degrees C reduced stachyose and raffinose amounts by 100 and 73%, respectively.
Resumo:
Matsumoto T, Tostes RC, Webb RC. Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 301: H409-H417, 2011. First published May 6, 2011; doi:10.1152/ajpheart.00084.2011.-Uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived contracting factor. Up(4)A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up(4)A in hypertensive states remain unclear. The present study examined the effects of Up(4)A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up(4)A versus arteries from control uninephrectomized rats in the absence and presence of N(G)-nitro-L-arginine (nitric oxide synthase inhibitor). On the other hand, the Up(4)A-induced contraction in PA was similar between the two groups. Up(4)A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip5I; P2X(1) antagonist) in RA from both groups. Furthermore, 2-thiouridine 5`-triphosphate tetrasodium salt (2-Thio-UTP; P2Y(2) agonist)-, uridine-5`-(gamma-thio)-triphosphate trisodium salt (UTP gamma S; P2Y(2)/P2Y(4) agonist)-, and 5-iodouridine-5`-O-diphosphate trisodium salt (MRS 2693; P2Y(6) agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y(2)-, P2Y(4)-, and P2Y(6) receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up(4)A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up(4)Astimulated ERK activation was increased. These data are the first to indicate that Up(4)A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up(4)A-induced contraction. Up(4)A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.
Resumo:
Secretion of vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) is an essential mechanism for the maintenance of hydromineral homeostasis. Secretion of these hormones is modulated by several circulating factors, including oestradiol. However, it remains unclear how oestradiol exerts this modulation. In the present study we investigated the participation of oestradiol in the secretion of VP, OT and ANP and in activation of vasopressinergic and oxytocinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to extracellular volume expansion (EVE). For this purpose, ovariectomised (OVX) rats treated for 7 days with vehicle (corn oil, 0.1 ml/rat, OVX+O group) or oestradiol (oestradiol cypionate, 10 mu g/kg, OVX+E group) were subjected to either isotonic (0.15 m NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 m NaCl, 2 ml/100 g b.w., i.v.) EVE. Blood samples were collected for plasma VP, OT and ANP determination. Another group of rats was subjected to cerebral perfusion, and brain sections were processed for c-Fos-VP and c-Fos-OT double-labelling immunohistochemistry. In OVX+O rats, we observed that both isotonic and hypertonic EVE increased plasma OT and ANP concentrations, although no changes were observed in VP secretion. Oestradiol replacement did not alter hormonal secretion in response to isotonic EVE, but it increased VP secretion and potentiated plasma OT and ANP concentrations in response to hypertonic EVE. Immunohistochemical data showed that, in the OVX+O group, hypertonic EVE increased the number of c-Fos-OT and c-Fos-VP double-labelled neurones in the PVN and SON. Oestradiol replacement did not alter neuronal activation in response to isotonic EVE, but it potentiated vasopressinergic and oxytocinergic neuronal activation in the medial magnocellular PVN (PaMM) and SON. Taken together, these results suggest that oestradiol increases the responsiveness of vasopressinergic and oxytocinergic magnocellular neurones in the PVN and SON in response to osmotic stimulation.
Resumo:
The endocannabinoid system includes important signaling molecules that are involved in several homeostatic and neuroendocrine functions. In the present study, we evaluated the effects of the type 1 cannabinoid (CB(1)) receptor antagonist, rimonabant (10 mg/kg, p.o.), on hormone secretion, neuronal activation and mRNA expression in the hypothalamus following isotonic (I-) or hypertonic (H-) extracellular volume expansion (EVE). The total nitrate content in the PVN and SON was also assessed under the same experimental conditions. Our results showed that OT and AVP plasma concentrations were increased in response to H-EVE, while decreased AVP levels were found following I-EVE. Accordingly, both I- and H-EVE stimulated oxytocinergic neuronal activation, as evidenced by the increased number of c-Fos/OT double labeled neurons in the hypothalamus. The vasopressinergic cells of the PVN and SON, however, were only activated in response to H-EVE. Furthermore, increased amounts of both AVP and OT mRNAs were found in the hypothalamus following EVE. Pretreatment with rimonabant significantly potentiated hormone secretion and also vasopressinergic and oxytocinergic neuronal activation induced by EVE, although decreased AVP and OT mRNA expression was found in the hypothalami of rimonabant pretreated groups. In addition, the nitrate content in the PVN and SON was not altered in response to EVE or rimonabant pretreatment. Taken together, these results suggest that the CB(1) receptor may modulate several events that contribute to the development of appropriate responses to increased fluid volume and osmolality. (C) 2010 Elsevier Inc. All rights reserved.