977 resultados para Error Correcting Codes
Resumo:
We present a theoretical method for a direct evaluation of the average and reliability error exponents in low-density parity-check error-correcting codes using methods of statistical physics. Results for the binary symmetric channel are presented for codes of both finite and infinite connectivity.
Resumo:
The question raised by researchers in the field of mathematical biology regarding the existence of error-correcting codes in the structure of the DNA sequences is answered positively. It is shown, for the first time, that DNA sequences such as proteins, targeting sequences and internal sequences are identified as codewords of BCH codes over Galois fields.
Resumo:
Error-correcting codes and matroids have been widely used in the study of ordinary secret sharing schemes. In this paper, the connections between codes, matroids, and a special class of secret sharing schemes, namely, multiplicative linear secret sharing schemes (LSSSs), are studied. Such schemes are known to enable multiparty computation protocols secure against general (nonthreshold) adversaries.Two open problems related to the complexity of multiplicative LSSSs are considered in this paper. The first one deals with strongly multiplicative LSSSs. As opposed to the case of multiplicative LSSSs, it is not known whether there is an efficient method to transform an LSSS into a strongly multiplicative LSSS for the same access structure with a polynomial increase of the complexity. A property of strongly multiplicative LSSSs that could be useful in solving this problem is proved. Namely, using a suitable generalization of the well-known Berlekamp–Welch decoder, it is shown that all strongly multiplicative LSSSs enable efficient reconstruction of a shared secret in the presence of malicious faults. The second one is to characterize the access structures of ideal multiplicative LSSSs. Specifically, the considered open problem is to determine whether all self-dual vector space access structures are in this situation. By the aforementioned connection, this in fact constitutes an open problem about matroid theory, since it can be restated in terms of representability of identically self-dual matroids by self-dual codes. A new concept is introduced, the flat-partition, that provides a useful classification of identically self-dual matroids. Uniform identically self-dual matroids, which are known to be representable by self-dual codes, form one of the classes. It is proved that this property also holds for the family of matroids that, in a natural way, is the next class in the above classification: the identically self-dual bipartite matroids.
Resumo:
Using event-related brain potentials, the time course of error detection and correction was studied in healthy human subjects. A feedforward model of error correction was used to predict the timing properties of the error and corrective movements. Analysis of the multichannel recordings focused on (1) the error-related negativity (ERN) seen immediately after errors in response- and stimulus-locked averages and (2) on the lateralized readiness potential (LRP) reflecting motor preparation. Comparison of the onset and time course of the ERN and LRP components showed that the signs of corrective activity preceded the ERN. Thus, error correction was implemented before or at least in parallel with the appearance of the ERN component. Also, the amplitude of the ERN component was increased for errors, followed by fast corrective movements. The results are compatible with recent views considering the ERN component as the output of an evaluative system engaged in monitoring motor conflict.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Z(4)-linearity is a construction technique of good binary codes. Motivated by this property, we address the problem of extending the Z(4)-linearity to Z(q)n-linearity. In this direction, we consider the n-dimensional Lee space of order q, that is, (Z(q)(n), d(L)), as one of the most interesting spaces for coding applications. We establish the symmetry group of Z(q)(n) for any n and q by determining its isometries. We also show that there is no cyclic subgroup of order q(n) in Gamma(Z(q)(n)) acting transitively in Z(q)(n). Therefore, there exists no Z(q)n-linear code with respect to the cyclic subgroup.
Resumo:
This thesis regards the Wireless Sensor Network (WSN), as one of the most important technologies for the twenty-first century and the implementation of different packet correcting erasure codes to cope with the ”bursty” nature of the transmission channel and the possibility of packet losses during the transmission. The limited battery capacity of each sensor node makes the minimization of the power consumption one of the primary concerns in WSN. Considering also the fact that in each sensor node the communication is considerably more expensive than computation, this motivates the core idea to invest computation within the network whenever possible to safe on communication costs. The goal of the research was to evaluate a parameter, for example the Packet Erasure Ratio (PER), that permit to verify the functionality and the behavior of the created network, validate the theoretical expectations and evaluate the convenience of introducing the recovery packet techniques using different types of packet erasure codes in different types of networks. Thus, considering all the constrains of energy consumption in WSN, the topic of this thesis is to try to minimize it by introducing encoding/decoding algorithms in the transmission chain in order to prevent the retransmission of the erased packets through the Packet Erasure Channel and save the energy used for each retransmitted packet. In this way it is possible extend the lifetime of entire network.
Resumo:
This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes.
Resumo:
"Retyped October, 1964"
Resumo:
"Georgia Institute of Technology."
Resumo:
We investigate the performance of Gallager type error- correcting codes for Binary Symmetric Channels, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability, with improved decoding properties is obtained for finite K and C.
Resumo:
Low-density parity-check codes with irregular constructions have recently been shown to outperform the most advanced error-correcting codes to date. In this paper we apply methods of statistical physics to study the typical properties of simple irregular codes. We use the replica method to find a phase transition which coincides with Shannon's coding bound when appropriate parameters are chosen. The decoding by belief propagation is also studied using statistical physics arguments; the theoretical solutions obtained are in good agreement with simulation results. We compare the performance of irregular codes with that of regular codes and discuss the factors that contribute to the improvement in performance.
Resumo:
We propose a method to determine the critical noise level for decoding Gallager type low density parity check error correcting codes. The method is based on the magnetization enumerator (¸M), rather than on the weight enumerator (¸W) presented recently in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. Our results are more optimistic than those derived via the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.
Resumo:
The modem digital communication systems are made transmission reliable by employing error correction technique for the redundancies. Codes in the low-density parity-check work along the principles of Hamming code, and the parity-check matrix is very sparse, and multiple errors can be corrected. The sparseness of the matrix allows for the decoding process to be carried out by probability propagation methods similar to those employed in Turbo codes. The relation between spin systems in statistical physics and digital error correcting codes is based on the existence of a simple isomorphism between the additive Boolean group and the multiplicative binary group. Shannon proved general results on the natural limits of compression and error-correction by setting up the framework known as information theory. Error-correction codes are based on mapping the original space of words onto a higher dimensional space in such a way that the typical distance between encoded words increases.
Resumo:
We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multispin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems.