977 resultados para Equações integrais não-lineares - Soluções numéricas
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este trabalho discute dois aspectos da migração em profundidade através da continuação para baixo dos campos de onda: o tratamento de modos evanescentes e a correção da amplitude dos eventos migrados. Estes dois aspectos são discutidos em meios isotrópicos e para uma classe de meios anisotrópicos. Migrações por diferenças finitas (FD) e por diferenças finitas e Fourier (FFD) podem ser instáveis em meios com forte variação lateral de velocidade. Estes métodos utilizam aproximações de Padé reais para representar o operador que descreve a propagação de ondas descendentes. Estas abordagens não são capazes de tratar corretamente os modos evanescentes, o que pode levar à instabilidades numéricas em meios com forte variação lateral de velocidade. Uma solução possível para esse problema é utilizar aproximação de Padé complexa, que consegue melhor representar os modos evanescentes associados às reflexões pós-críticas, e neste trabalho esta aproximação é utilizada para obter algoritmos FD e híbrido FD/FFD estáveis para migração em meios transversalmente isotrópicos com eixo de simetria vertical (VTI), mesmo na presença de forte variação nas propriedades elásticas do meio. A estabilidade dos algoritmos propostos para meios VTI foi validada através da resposta ao impulso do operador de migração e pela sua aplicação na migração de dados sintéticos, em meios fortemente heterogêneos. Métodos de migração por equação de onda em meios heterogêneos não tratam corretamente a amplitude dos eventos durante a propagação. As equações de onda unidirecionais tradicionais descrevem corretamente apenas a parte cinemática da propagação do campo de onda. Assim, para uma descrição correta das amplitudes deve-se usar as equações de onda unidirecionais de amplitude verdadeira. Em meios verticalmente heterogêneos, as equações de onda unidirecionais de amplitude verdadeira podem ser resolvidas analiticamente. Em meios lateralmente heterogêneos, essas equações não possuem uma solução analítica. Mesmo soluções numéricas tendem a ser instáveis. Para melhorar a compensação de amplitude na migração, em meios com variação lateral de velocidade, é proposto uma aproximação estável para solução da equação de onda unidirecional de amplitude verdadeira. Esta nova aproximação é implementada nas migrações split-step e diferenças finitas e Fourier (FFD). O algoritmo split-step com correção de amplitude foi estendido para meios VTI. A migração pré e pós-empilhamento de dados sintéticos, em meios isotrópicos e anisotrópicos, confirmam o melhor tratamento das amplitudes e estabilidade dos algoritmos propostos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Through deductions and formulations of the equations governing the behavior of plates elastic and thin based Kirchhoff theory, it is evident that it is justifiable to the complication of the numerical methods considering the complexity of the equations that describe the physical behavior of these elements and obtaining analytical solutions for specific situations. This study is directed to the application of the numerical method which is based on discretizations to the simplest elements which results in the reduction of data to be processed from. The numerical method in question is the Boundary Element Methods (BEM), as the name suggests, the discretizations are only the edges of the elements. The BEM converts the complex integral equations, in sums of functions that reduce the unknowns at the nodes that define the ends of discrete elements, obtaining internal values to elements using interpolation functions. Confirming the need and usefulness of the BEM, apply, then the foundations necessary to the specific cases of Civil Engineering where traditional methods do not provide the desired support, leaving in question the security situations and economics of the projects
Resumo:
Our purpose is to show the effects in the predator-prey trajectories due to parameter temporal perturbations and/or inclusion of capacitive terms in the Lotka Volterra Model. An introduction to the Lotka Volterra Model (chapter 2) required a brief review of nonlinear differential equations and stability analysis (chapter 1) , for a better understanding of our work. In the following chapters we display in sequence our results and discussion for the randomic pertubation case (chapter 3); periodic perturbation (chapter 4) and inclusion of capacitive terms (chapter 5). Finally (chapter 6) we synthesize our result
Resumo:
The SPECT (Single Photon Emission Computed Tomography) systems are part of a medical image acquisition technology which has been outstanding, because the resultant images are functional images complementary to those that give anatomic information, such as X-Ray CT, presenting a high diagnostic value. These equipments acquire, in a non-invasive way, images from the interior of the human body through tomographic mapping of radioactive material administered to the patient. The SPECT systems are based on the Gamma Camera detection system, and one of them being set on a rotational gantry is enough to obtain the necessary data for a tomographic image. The images obtained from the SPECT system consist in a group of flat images that describe the radioactive distribution on the patient. The trans-axial cuts are obtained from the tomographic reconstruction techniques. There are analytic and iterative methods to obtain the tomographic reconstruction. The analytic methods are based on the Fourier Cut Theorem (FCT), while the iterative methods search for numeric solutions to solve the equations from the projections. Within the analytic methods, the filtered backprojection (FBP) method maybe is the simplest of all the tomographic reconstruction techniques. This paper's goal is to present the operation of the SPECT system, the Gamma Camera detection system, some tomographic reconstruction techniques and the requisites for the implementation of this system in a Nuclear Medicine service