943 resultados para Equações algébrico-diferenciais
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this work was the study of numerical methods for differential equations of fractional order and ordinary. These methods were applied to the problem of calculating the distribution of the concentration of a given substance over time in a given physical system. The two compartment model was used for representation of this system. Comparison between numerical solutions obtained were performed and, in particular, also compared with the analytical solution of this problem. Finally, estimates for the error between the solutions were calculated
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A necessidade de obter solução de grandes sistemas lineares resultantes de processos de discretização de equações diferenciais parciais provenientes da modelagem de diferentes fenômenos físicos conduz à busca de técnicas numéricas escaláveis. Métodos multigrid são classificados como algoritmos escaláveis.Um estimador de erros deve estar associado à solução numérica do problema discreto de modo a propiciar a adequada avaliação da solução obtida pelo processo de aproximação. Nesse contexto, a presente tese caracteriza-se pela proposta de reutilização das estruturas matriciais hierárquicas de operadores de transferência e restrição dos métodos multigrid algébricos para acelerar o tempo de solução dos sistemas lineares associados à equação do transporte de contaminantes em meio poroso saturado. Adicionalmente, caracteriza-se pela implementação das estimativas residuais para os problemas que envolvem dados constantes ou não constantes, os regimes de pequena ou grande advecção e pela proposta de utilização das estimativas residuais associadas ao termo de fonte e à condição inicial para construir procedimentos adaptativos para os dados do problema. O desenvolvimento dos códigos do método de elementos finitos, do estimador residual e dos procedimentos adaptativos foram baseados no projeto FEniCS, utilizando a linguagem de programação PYTHONR e desenvolvidos na plataforma Eclipse. A implementação dos métodos multigrid algébricos com reutilização considera a biblioteca PyAMG. Baseado na reutilização das estruturas hierárquicas, os métodos multigrid com reutilização com parâmetro fixo e automática são propostos, e esses conceitos são estendidos para os métodos iterativos não-estacionários tais como GMRES e BICGSTAB. Os resultados numéricos mostraram que o estimador residual captura o comportamento do erro real da solução numérica, e fornece algoritmos adaptativos para os dados cuja malha retornada produz uma solução numérica similar à uma malha uniforme com mais elementos. Adicionalmente, os métodos com reutilização são mais rápidos que os métodos que não empregam o processo de reutilização de estruturas. Além disso, a eficiência dos métodos com reutilização também pode ser observada na solução do problema auxiliar, o qual é necessário para obtenção das estimativas residuais para o regime de grande advecção. Esses resultados englobam tanto os métodos multigrid algébricos do tipo SA quanto os métodos pré-condicionados por métodos multigrid algébrico SA, e envolvem o transporte de contaminantes em regime de pequena e grande advecção, malhas estruturadas e não estruturadas, problemas bidimensionais, problemas tridimensionais e domínios com diferentes escalas.