988 resultados para Equação de advecção


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propomos uma idealização da situação em que uma macromolécula é ionizada em um solvente. Neste modelo a área da superfície da molécula é suposta ser grande com respeito a seu diâmetro. A molécula é considerada como um dielétrico com uma distribuição de cargas em sua superfície. Utilizando as condições de transmissão, a distribuição de Boltzmann no solvente e resultados recentes sobre espaços de Sobolev no contexto de espaços métricos, bem como de integração sobre superfícies irregulares, o problema é formulado em forma variacional. Resultados clássicos do cálculo de variações permitem a resolução analítica do problema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho, desenvolvemos uma metodologia semi-analítica para solução de problemas de condução de calor bidimensional, não-estacionária em meios multicompostos. Esta metodologia combina os métodos nodal, com parâmetros concentrados, e a técnica da transformada de Laplace. Inicialmente, aplicamos o método nodal. Nele, a equação diferencial parcial que descreve o problema é integrada, transversalmente, em relação a uma das variáveis espaciais. Em seguida, é utilizado o método de parâmetros concentrados, onde a distribuição de temperatura nos contornos superior e inferior é substituída pelo seu valor médio. Os problemas diferenciais unidimensionais resultantes são então resolvidos com o uso da técnica da transformada de Laplace, cuja inversão é avaliada numericamente. O método proposto é usado na solução do problema de condução de calor, em paredes de edificações. A implementação computacional é feita, utilizando-se a linguagem FORTRAN e os resultados numéricos obtidos são comparados com os disponíveis na literatura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudamos o problema de Dirichlet para a equação das superfícies mínimas em domínios limitados do plano. Provamos a existência e unicidade de gráficos mínimos sobre domínios limitados e não necessariamente convexos, com valores no bordo satisfazendo uma condição que denominamos condição da declividade limitada generalizada a qual, usando cilindros no lugar de planos, generaliza a condição clássica da declividade limitada. Com este resultado, dado um domínio limitado e suave qualquer do plano, conseguimos obter cotas explícitas para a norma C2 de dados no bordo deste domínio que garantem a existência de solução ao correspondente problema de Dirichlet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho se propõe um avanço para a Técnica Transformada Integral Generalizada, GITT. O problema transformado, usualmente resolvido por subrotinas numéricas, é aqui abordado analiticamente fazendo-se uso da Transformada de Laplace. Para exemplificar o uso associado destas duas transformadas integrais, resolvem-se dois problemas. Um de concentração de poluentes na atmosfera e outro de convecção forçada com escoamento laminar, entre placas planas paralelas, com desenvolvimento simultâneo dos perfis térmico e hidrodinâmico. O primeiro é difusivo, transiente e com coeficientes variáveis. Sua solução é obtida de forma totalmente analítica. Além de mostrar o uso da técnica, este exemplo apesar de ter coeficientes variáveis, é resolvido com o auxílio de um problema de autovalores associado com coeficientes constantes. No segundo, obtém-se a solução da Equação da Energia analiticamente. Já a Equação da Conservação do Momentum é linearizada e resolvida de forma iterativa. A solução de cada iteração é obtida analiticamente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A equação de difusão-advecção é muito utilizada no campo de estudos da poluição atmosférica na determinação da concentração de poluentes. Uma maneira de solucionar o problema de fechamento desta equação está baseada na hipótese de transporte por gradiente que, em analogia com a difusão molecular, assume que o fluxo turbulento de concentração é proporcional à magnitude do gradiente de concentração média. Neste trabalho, diferentemente do modo tradicional, utiliza-se uma equação genérica para a difusão turbulenta considerando-se que o fluxo mais a sua derivada são proporcionais ao gradiente médio. Desta forma, obtém-se uma equação que leva em conta a assimetria no processo de dispersão de poluentes atmosféricos. Portanto, a proposta do presente trabalho é a obtenção da solução analítica desta nova equação utilizando-se a técnica da Transformada de Laplace, considerando-se a Camada Limite Planetária (CLP) como um sistema multicamadas. Os parâmetros que encerram a turbulência sâo derivados da teoria de difusão estatística de Taylor combinada com a teoria de similaridade convectiva válidos para grandes tempos de difusão. Finalmente, na avaliação da performance deste modelo que considera a assimetria no processo de dispersão de poluentes atmosféricos, utilizam-se os dados experimentais de Copenhagen e Prairie Grass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste artigo estudamos a relação entre a taxa de juros e o hiato do produto no Brasil através da estimação de modelos Novo-Keynesianos. Para tanto, estimamos os modelos por três métodos: (1) método generalizados dos momentos, (2) máxima verossimilhança utilizando dados de expectativa divulgados pelo Banco Central do Brasil e (3) máxima verossimilhança utilizando variáveis de expectativa estimadas por um modelo VAR. As conclusões são altamente dependentes do método de estimação. Ao utilizar (1), os resultados indicam uma relação espúria entre a taxa de juros real e o hiato. Entretanto, as conclusões originadas de (2) indicam que somente o hiato defasado seria uma variável relevante para a nossa especificação. Ao estimar o modelo por (3), as estimativas corroboram os resultados obtidos com o método generalizados dos momentos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho, um problema de transferência de calor da dinâmica de gases rarefeitos, causado pela diferença de temperaturas nas superfícies de um canal, é abordado. O problema é formulado através dos modelos cinéticos BGK, S e Gross-Jackson da equação linearizada de Boltzmann e resolvido, de forma unificada, pelo método analítico de ordenadas discretas (método ADO). Resultados numéricos para as perturbações de densidade e temperatura e também para o fluxo de calor são apresentados e comparados, mostrando que não se pode dizer que algum dos três modelos seja uma melhor aproximação da solução aos resultados da equação linearizada de Boltzmann.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho consiste em estender o método LTSN à solução do problema adjunto de transporte de nêutrons. A solução adjunta é interpretada fisicamente como uma função importância que designa a capacidade de contribuição de cada cela do espaço de fase para um funcional resposta. A derivação desta interpretação, através do princípio variacional, está sucintamente apresentada. Surgida da necessidade de generalização da fonte adjunta, também propõe-se uma nova formulação LTSN capaz de resolver problemas de transporte, tanto direto quanto adjunto, com fonte arbitrária, para elevada ordem de quadratura em geometria de placa. Esta nova formulção inspira-se na propriedade de invariância de projeção dos meios isotrópicos mas também é válida para os meios anisotrópicos. Todos os resultados apresentados pelas simulações numéricas de problemas adjuntos são calculados pela nova formulação LTSN e são comparados ou com a definição de função importância ou pelas relações de reciprocidade ou pelo código ANISN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho e apresentado um avanço na tecnica GILTT(Generalized Integral and Laplace Transform Technique) solucionando analiticamente um sistema de EDO's(Equações Diferenciais Ordinarias) de segunda ordem resultante da transformação pela GITT(Generalized Integral Transform Technique). Este tipo de problema usualmente aparece quando esta tecnica é aplicada na solução de problemas bidimensionais estacionários. A principal idéia consiste na redução de ordem do problema transformado em outro sistema de EDO's lineares de primeira ordem e a solução analítica deste problema, pela técnica da transformada de Laplace. Como exemplo de aplicação é resolvida a equação da energia linear bidimensional e estacionária. São apresentadas simulações numéricas e comparações com resultados disponíveis na literatura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho é obtida uma solução híbrida para a equação de Fokker-Planck dependente da energia, muito utilizada em problemas de implantação iônica. A idéia consiste na aplicação da transformada de Laplace na variável de energia e aplicação de um esquema de diferenças finitas nas variáveis espacial e angular desta equação. Tal procedimento gera um problema matricial simbólico para a energia transformada. Para resolver este sistema, procede-se a inversão de Laplace da matriz (sI+A), onde s é um parâmetro complexo, I a matriz identidade e A uma matriz quadrada gerada pela discretização das variáveis espacial e angular. A matriz A não é diagonalizável, desta forma, contorna-se este problema decompondo esta matriz na soma de outras duas, onde uma delas é diagonalizável. É gerado então um método iterativo de inversão, semelhante ao método da fonte fixa associado ao método de diagonalização, do qual o resultado fornecido são os valores para o fluxo de partículas do sistema. A partir disto pode-se determinar a energia depositada no sistema eletrônico e nuclear do alvo. Para validar os resultados obtidos faz-se a simulação de implantação de íons de B em Si numa faixa energética de 1keV a 50MeV, comparam-se os resultados com simulação gerada numericamente pelo software SRIM2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No presente trabalho, obtemos e analisamos diversas propriedades das soluções u(·, t) da equação de difusão linear (equação do calor em meios unidimensionais homogêneos) ut = μuxx x 2 R, t > 0 correspondentes a estados iniciais u(x, 0) = u0(x), com u0 2 Lp(R), para algum 1 p < 1; bem como da equação de Burgers ut + cuux = μuxx x 2 R, t > 0 onde c, μ são constantes dadas, sendo c 6= 0 e μ > 0 e ainda assumindo u(x, 0) = u0(x) com u0 2 Lp(R) para 1 p < 1, e limitado. Estudamos também a equação mais geral da forma ut + f(u)x = μuxx x 2 R, t > 0 discutindo várias propriedades importantes das soluções, associadas a estados iniciais u0 2 Lp(R) \ L1(R) para algum 1 p < 1. Em particular, examinamos o comportamento de ku(·, t)kLr(R), p r 1, para t >> 1, e diversas propriedades relacionadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho é apresentada uma solução analítica de um problema bidimensional e transiente de dispersão de poluentes atmosféricos. O modelamento utilizado é conhecido na literatura como modelo Kzz para dispersão de poluentes atmosféricos e é representado por uma equação difusivo-advectiva com coeficientes de difusão e advecção variáveis. São utilizados três diferentes coeficientes de difusão nas simulações, bem como as componentes horizontal e vertical do vento são tomadas como variáveis. A solução analítica é gerada através da aplicação da técnica GITT (Generalized Integral Transform Technique) dupla com problema transformado resolvido por Transformada de Laplace e diagonalização de matrizes. Filtros matemáticos são usados para homogenizar as condições de contorno viabilizando o uso da técnica citada. Além disso, o tipo de filtro matemático utilizado permite a sensível diminuição do custo computacional. Resultados numéricos são obtidos e comparados com dados experimentais e outras soluções da literatura.