930 resultados para Energy Strategy
Resumo:
El presente Estudio de Caso tiene como objetivo analizar en qué medida las dinámicas comerciales de la Diplomacia Petrolera China han convertido a Ecuador en un socio estratégico para la RPCh. El petróleo como fuente de energía es primordial para llevar a cabo los procesos de industrialización y mantener el crecimiento económico del león Asiático. Por eso su búsqueda se ha convertido en un tema principal dentro de la agenda de política exterior. Ecuador, el tercer país de Suramérica con más reservas de petróleo, después de Venezuela y Brasil, se ha convertido en zona de influencia de la RPCh y a través de las empresas petroleras estatales se han firmado contratos por la venta de petróleo. A pesar de que las relaciones bilaterales son asimétricas, se buscar establecer si Ecuador es un socio estratégico en la región.
Resumo:
This chapter brings a human security lens to bear on the energy-mix question in post-Fukushima Japan. In particular, two of the four elements of human security identified in the 1994 Human Development Report (HDR), prevention and people-centeredness, are mobilized. We trace developments in Japan’s post-Fukushima nuclear politics through the demise of DPJ rule to the advent of the LDP government, and evaluate the current nuclear energy strategy of the Abe administration. Using a human security framework, we consider the economic security dimension of the arguments for and against the use of nuclear power, and weigh the result of this consideration against a concern with the six other elements of human security identified in the 1994 HDR. We conclude that the risks and threats to human security engendered by the use of nuclear energy outweigh any benefits that could reasonably be argued to accrue from its use. The notion of prevention, so central to the concept of human security, performs a further ‘trumping’ function, in leading us to put a premium on the downside risk of the use of nuclear energy.
Resumo:
Natural air ventilation is the most import passive strategy to provide thermal comfort in hot and humid climates and a significant low energy strategy. However, the natural ventilated building requires more attention with the architectural design than a conventional building with air conditioning systems, and the results are less reliable. Therefore, this thesis focuses on softwares and methods to predict the natural ventilation performance from the point of view of the architect, with limited resource and knowledge of fluid mechanics. A typical prefabricated building was modelled due to its simplified geometry, low cost and occurrence at the local campus. Firstly, the study emphasized the use of computational fluid dynamics (CFD) software, to simulate the air flow outside and inside the building. A series of approaches were developed to make the simulations possible, compromising the results fidelity. Secondly, the results of CFD simulations were used as the input of an energy tool, to simulate the thermal performance under different rates of air renew. Thirdly, the results of temperature were assessed in terms of thermal comfort. Complementary simulations were carried out to detail the analyses. The results show the potentialities of these tools. However the discussions concerning the simplifications of the approaches, the limitations of the tools and the level of knowledge of the average architect are the major contribution of this study
Resumo:
Ukraine’s deposits of unconventional gas (shale gas, tight gas trapped in non-porous sandstone formations, and coal bed methane) may form a significant part of Europe’s gas reserves. Initial exploration and test drilling will be carried out in two major deposits: Yuzivska (Kharkiv and Donetsk Oblasts) and Oleska (Lviv and Ivano-Frankivsk Oblasts), to confirm the volume of the reserves. Shell and Chevron, respectively, won the tenders for the development of these fields in mid 2012. Gas extraction on an industrial scale is expected to commence in late 2018/ early 2019 at the earliest. According to estimates presented in the draft Energy Strategy of Ukraine 2030, annual gas production levels may range between 30 billion m3 and 47 billion m3 towards the end of the next decade. According to optimistic forecasts from IHS CERA, total gas production (from both conventional and unconventional reserves) could reach as much as 73 billion m3. However, this will require multi-billion dollar investments, a significant improvement in the investment climate, and political stability. It is clear at the present initial stage of the unconventional gas extraction project that the private interests of the Ukrainian government elite have played a positive role in initiating unconventional gas extraction projects. Ukraine has had to wait nearly four decades for this opportunity to regain its status of a major gas producer. Gas from unconventional sources may lead not only to Ukraine becoming self-sufficient in terms of energy supplies, but may also result in it beginning to export gas. Furthermore, shale gas deposits in Poland and Ukraine, including on the Black Sea shelf (both traditional natural gas and gas hydrates) form a specific ‘European methane belt’, which could bring about a cardinal change in the geopolitics and geo-economics of Eastern and Central Europe over the next thirty years.
Resumo:
Natural air ventilation is the most import passive strategy to provide thermal comfort in hot and humid climates and a significant low energy strategy. However, the natural ventilated building requires more attention with the architectural design than a conventional building with air conditioning systems, and the results are less reliable. Therefore, this thesis focuses on softwares and methods to predict the natural ventilation performance from the point of view of the architect, with limited resource and knowledge of fluid mechanics. A typical prefabricated building was modelled due to its simplified geometry, low cost and occurrence at the local campus. Firstly, the study emphasized the use of computational fluid dynamics (CFD) software, to simulate the air flow outside and inside the building. A series of approaches were developed to make the simulations possible, compromising the results fidelity. Secondly, the results of CFD simulations were used as the input of an energy tool, to simulate the thermal performance under different rates of air renew. Thirdly, the results of temperature were assessed in terms of thermal comfort. Complementary simulations were carried out to detail the analyses. The results show the potentialities of these tools. However the discussions concerning the simplifications of the approaches, the limitations of the tools and the level of knowledge of the average architect are the major contribution of this study
Resumo:
Wind energy is one of the most promising and fast growing sector of energy production. Wind is ecologically friendly and relatively cheap energy resource available for development in practically all corners of the world (where only the wind blows). Today wind power gained broad development in the Scandinavian countries. Three important challenges concerning sustainable development, i.e. energy security, climate change and energy access make a compelling case for large-scale utilization of wind energy. In Finland, according to the climate and energy strategy, accepted in 2008, the total consumption of electricity generated by means of wind farms by 2020, should reach 6 - 7% of total consumption in the country [1]. The main challenges associated with wind energy production are harsh operational conditions that often accompany the turbine operation in the climatic conditions of the north and poor accessibility for maintenance and service. One of the major problems that require a solution is the icing of turbine structures. Icing reduces the performance of wind turbines, which in the conditions of a long cold period, can significantly affect the reliability of power supply. In order to predict and control power performance, the process of ice accretion has to be carefully tracked. There are two ways to detect icing – directly or indirectly. The first way applies to the special ice detection instruments. The second one is using indirect characteristics of turbine performance. One of such indirect methods for ice detection and power loss estimation has been proposed and used in this paper. The results were compared to the results directly gained from the ice sensors. The data used was measured in Muukko wind farm, southeast Finland during a project 'Wind power in cold climate and complex terrain'. The project was carried out in 9/2013 - 8/2015 with the partners Lappeenranta university of technology, Alstom renovables España S.L., TuuliMuukko, and TuuliSaimaa.
Resumo:
Natural air ventilation is the most import passive strategy to provide thermal comfort in hot and humid climates and a significant low energy strategy. However, the natural ventilated building requires more attention with the architectural design than a conventional building with air conditioning systems, and the results are less reliable. Therefore, this thesis focuses on softwares and methods to predict the natural ventilation performance from the point of view of the architect, with limited resource and knowledge of fluid mechanics. A typical prefabricated building was modelled due to its simplified geometry, low cost and occurrence at the local campus. Firstly, the study emphasized the use of computational fluid dynamics (CFD) software, to simulate the air flow outside and inside the building. A series of approaches were developed to make the simulations possible, compromising the results fidelity. Secondly, the results of CFD simulations were used as the input of an energy tool, to simulate the thermal performance under different rates of air renew. Thirdly, the results of temperature were assessed in terms of thermal comfort. Complementary simulations were carried out to detail the analyses. The results show the potentialities of these tools. However the discussions concerning the simplifications of the approaches, the limitations of the tools and the level of knowledge of the average architect are the major contribution of this study
Resumo:
La monografía pretende explicar el rol desempeñado por Exxon Mobil y Chevron en la formulación de la Gran Estrategia del gobierno Bush hacia Irak. Especialmente, se sostiene que las dos compañías multinacionales mencionadas lograron que la intervención militar en Irak, fuera pensada como un objetivo fundamental de la política energética del gobierno Bush. Para lograr este objetivo, Chevron y Exxon aprovecharon principalmente su posición en la economía nacional estadounidense. De hecho, lograron celebrar contratos a largo plazo para la extracción del crudo y de gas en Irak. Fundamentándose en un análisis documental, estas compañías son analizadas como grupos de presión empresarial y grupos económicos, cuyos beneficios derivados de la invasión en Irak pueden encontrarse incluso durante el gobierno Obama.
Resumo:
Expanding energy access to the rural population of India presents a critical challenge for its government. The presence of 364 million people without access to electricity and 726 million who rely on biomass for cooking indicate both the failure of past policies and programs, and the need for a radical redesign of the current system. We propose an integrated implementation framework with recommendations for adopting business principles with innovative institutional, regulatory, financing and delivery mechanisms. The framework entails establishment of rural energy access authorities and energy access funds, both at the national and regional levels, to be empowered with enabling regulatory policies, capital resources and the support of multi-stakeholder partnership. These institutions are expected to design, lead, manage and monitor the rural energy interventions. At the other end, trained entrepreneurs would be expected to establish bioenergy-based micro-enterprises that will produce and distribute energy carriers to rural households at an affordable cost. The ESCOs will function as intermediaries between these enterprises and the international carbon market both in aggregating carbon credits and in trading them under CDM. If implemented, such a program could address the challenges of rural energy empowerment by creating access to modern energy carriers and climate change mitigation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The inverse problem in photoacoustic tomography (PAT) seeks to obtain the absorbed energy map from the boundary pressure measurements for which computationally intensive iterative algorithms exist. The computational challenge is heightened when the reconstruction is done using boundary data split into its frequency spectrum to improve source localization and conditioning of the inverse problem. The key idea of this work is to modify the update equation wherein the Jacobian and the perturbation in data are summed over all wave numbers, k, and inverted only once to recover the absorbed energy map. This leads to a considerable reduction in the overall computation time. The results obtained using simulated data, demonstrates the efficiency of the proposed scheme without compromising the accuracy of reconstruction.
Resumo:
In this paper we employ the recently introduced improved moving average methodology of Papailias and Thomakos (2011) and we apply it in two energy ETFs. We compare it to the standard moving average methodology and the buy and hold strategy. Investors who are interested in energy-related sectors and trade using averages, could benefit by forming their strategies based on this improved moving average methodology as it returns higher profits accompanied by decreased risk (measured in terms of drawdown).