972 resultados para Electromagnetic Fields, Fluxes.
Resumo:
We investigated the association between exposure to radio-frequency electromagnetic fields (RF-EMFs) from broadcast transmitters and childhood cancer. First, we conducted a time-to-event analysis including children under age 16 years living in Switzerland on December 5, 2000. Follow-up lasted until December 31, 2008. Second, all children living in Switzerland for some time between 1985 and 2008 were included in an incidence density cohort. RF-EMF exposure from broadcast transmitters was modeled. Based on 997 cancer cases, adjusted hazard ratios in the time-to-event analysis for the highest exposure category (>0.2 V/m) as compared with the reference category (<0.05 V/m) were 1.03 (95% confidence interval (CI): 0.74, 1.43) for all cancers, 0.55 (95% CI: 0.26, 1.19) for childhood leukemia, and 1.68 (95% CI: 0.98, 2.91) for childhood central nervous system (CNS) tumors. Results of the incidence density analysis, based on 4,246 cancer cases, were similar for all types of cancer and leukemia but did not indicate a CNS tumor risk (incidence rate ratio = 1.03, 95% CI: 0.73, 1.46). This large census-based cohort study did not suggest an association between predicted RF-EMF exposure from broadcasting and childhood leukemia. Results for CNS tumors were less consistent, but the most comprehensive analysis did not suggest an association.
Resumo:
Purpose: In homeopathy or anthroposophically extended medicine high dilutions are used. They showed significant differences in ultraviolet light (UV) transmission between controls and different dilution levels. Exposing such dilutions to physical factors such as UV light or elevated temperature (37�C) yielded significantly different UV transmissions values compared to unexposed dilutions. The aim was to test whether electromagnetic fields (EMF) of a mobile phone affect the UV absorbance of dilutions of Atropa belladonna (Ab) and quartz. Methods: Commercially available dilutions of Ab 4x, 6x, 12x, 15x, 30x and of quartz 6x, 12x, 15x, 30x were investigated. On 5 days, 4 samples of each dilution were exposed to the EMF by a mobile phone at 900MHz (GSM) with an output power of 2W for 3 h. Control samples were kept in a separate room. UV-absorbance of the samples in the range from 190 to 340 nm was measured in randomized order. The average absorbance from 200 to 340 nm and from 200 to 240 nm was compared between exposed and unexposed samples by a dependent t-test. Results: Between unexposed and exposed dilutions of Ab and quartz no significant differences were detected, except for quartz 12x over the range from 200 to 340 nm. Conclusion: Exposure of high dilutions of Ab and quartz to GSM EMF of a mobile phone did not alter UV absorbance of these dilutions.
Resumo:
The existence of an association between leukemia and electromagnetic fields (EMF) is still controversial. The results of epidemiologic studies of leukemia in occupational groups with exposure to EMF are inconsistent. Weak associations have been seen in a few studies. EMF assessment is lacking in precision. Reported dose-response relationships have been based on qualitative levels of exposure to EMF without regard to duration of employment or EMF intensity on the jobs. Furthermore, potential confounding factors in the associations were not often well controlled. The current study is an analysis of the data collected from an incident case-control study. The primary objective was to test the hypothesis that occupational exposure to EMF is associated with leukemia, including total leukemia (TL), myelogenous leukemia (MYELOG) and acute non-lymphoid leukemia (ANLL). Potential confounding factors: occupational exposure to benzene, age, smoking, alcohol consumption, and previous medical radiation exposures were controlled in multivariate logistic regression models. Dose-response relationships were estimated by cumulative occupational exposure to EMF, taking into account duration of employment and EMF intensity on the jobs. In order to overcome weaknesses of most previous studies, special efforts were made to improve the precision of EMF assessment. Two definitions of EMF were used and result discrepancies using the two definitions were observed. These difference raised a question as to whether the workers at jobs with low EMF exposure should be considered as non-exposed in future studies. In addition, the current study suggested use of lifetime cumulative EMF exposure estimates to determine dose-response relationship. The analyses of the current study suggest an association between ANLL and employment at selected jobs with high EMF exposure. The existence of an association between three types of leukemia and broader categories of occupational EMF exposure, is still undetermined. If an association does exist between occupational EMF exposure and leukemia, the results of the current study suggest that EMF might only be a potential factor in the promotion of leukemia, but not its initiation. ^
Resumo:
For small or medium size conformal array antennas in terms of the wave length, modal solutions in spectral domain for mutual coupling analysis are convenient for canonical shapes such as circular cylinder [1] or sphere [2], but as the antenna dimensions increase a large number of terms are necessary. For large structures the uniform theory of diffraction (UTD) is commonly used to solve this problem for canonical and arbitrarily convex shaped perfect electric conductor (PEC) surfaces [3]. A UTD solution for mutual coupling on an impedance cylinder has been introduced in [4], [5] but using a constant surface impedance.
Resumo:
Mode of access: Internet.
Resumo:
"November 1980."
Resumo:
The precise evaluation of electromagnetic field (EMF) distributions inside biological samples is becoming an increasingly important design requirement for high field MRI systems. In evaluating the induced fields caused by magnetic field gradients and RF transmitter coils, a multilayered dielectric spherical head model is proposed to provide a better understanding of electromagnetic interactions when compared to a traditional homogeneous head phantom. This paper presents Debye potential (DP) and Dyadic Green's function (DGF)-based solutions of the EMFs inside a head-sized, stratified sphere with similar radial conductivity and permittivity profiles as a human head. The DP approach is formulated for the symmetric case in which the source is a circular loop carrying a harmonic-formed current over a wide frequency range. The DGF method is developed for generic cases in which the source may be any kind of RF coil whose current distribution can be evaluated using the method of moments. The calculated EMFs can then be used to deduce MRI imaging parameters. The proposed methods, while not representing the full complexity of a head model, offer advantages in rapid prototyping as the computation times are much lower than a full finite difference time domain calculation using a complex head model. Test examples demonstrate the capability of the proposed models/methods. It is anticipated that this model will be of particular value for high field MRI applications, especially the rapid evaluation of RF resonator (surface and volume coils) and high performance gradient set designs.
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Over the last few decades, electric and electromagnetic fields have achieved important role as stimulator and therapeutic facility in biology and medicine. In particular, low magnitude, low frequency, pulsed electromagnetic field has shown significant positive effect on bone fracture healing and some bone diseases treatment. Nevertheless, to date, little attention has been paid to investigate the possible effect of high frequency, high magnitude pulsed electromagnetic field (pulse power) on functional behaviour and biomechanical properties of bone tissue. Bone is a dynamic, complex organ, which is made of bone materials (consisting of organic components, inorganic mineral and water) known as extracellular matrix, and bone cells (live part). The cells give the bone the capability of self-repairing by adapting itself to its mechanical environment. The specific bone material composite comprising of collagen matrix reinforced with mineral apatite provides the bone with particular biomechanical properties in an anisotropic, inhomogeneous structure. This project hypothesized to investigate the possible effect of pulse power signals on cortical bone characteristics through evaluating the fundamental mechanical properties of bone material. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses up to 500 V and 10 kHz. Bone shows distinctive characteristics in different loading mode. Thus, functional behaviour of bone in response to pulse power excitation were elucidated by using three different conventional mechanical tests applying three-point bending load in elastic region, tensile and compressive loading until failure. Flexural stiffness, tensile and compressive strength, hysteresis and total fracture energy were determined as measure of main bone characteristics. To assess bone structure variation due to pulse power excitation in deeper aspect, a supplementary fractographic study was also conducted using scanning electron micrograph from tensile fracture surfaces. Furthermore, a non-destructive ultrasonic technique was applied for determination and comparison of bone elasticity before and after pulse power stimulation. This method provided the ability to evaluate the stiffness of millimetre-sized bone samples in three orthogonal directions. According to the results of non-destructive bending test, the flexural elasticity of cortical bone samples appeared to remain unchanged due to pulse power excitation. Similar results were observed in the bone stiffness for all three orthogonal directions obtained from ultrasonic technique and in the bone stiffness from the compression test. From tensile tests, no significant changes were found in tensile strength and total strain energy absorption of the bone samples exposed to pulse power compared with those of the control samples. Also, the apparent microstructure of the fracture surfaces of PP-exposed samples (including porosity and microcracks diffusion) showed no significant variation due to pulse power stimulation. Nevertheless, the compressive strength and toughness of millimetre-sized samples appeared to increase when the samples were exposed to 66 hours high power pulsed electromagnetic field through screws with small contact cross-section (increasing the pulsed electric field intensity) compare to the control samples. This can show the different load-bearing characteristics of cortical bone tissue in response to pulse power excitation and effectiveness of this type of stimulation on smaller-sized samples. These overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electromagnetic field at 500 V and 10 kHz through capacitive coupling method, was athermal and did not damage the bone tissue construction.