998 resultados para Electrical bias


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schottky-barrier structures with a resistive metal electrode are examined using the 4-point probe method where the probes are connected to the metal electrode only. The observation of a significant decrease in resistance with increasing temperature (over a range of similar to 100 K) in the diode resistance-temperature (R(D)-T) characteristic is considered due to charge carrier confinement to the metal electrode at low temperature (high resistance), with the semiconductor progressively opening up as a parallel current carrying channel (low resistance) with increasing temperature due to increasing thermionic emission across the barrier. A simple model is constructed, based on thermionic emission at quasi-zero bias, that generates good fits to the experimental data. The negative differential resistance (NDR) region in the R(D)-T characteristic is a general effect and is demonstrated across a broad temperature range for a variety of Schottky structures grown on Si-, GaAs- and InP-substrates. In addition the NDR effect is harnessed in micro-scaled Pd/n-InP devices for the detection of low levels of hydrogen in an ambient atmosphere of nitrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:



Email
Print











The accurate measurement of the permittivity, loss tangent and dielectric anisotropy DC bias dependence for two different liquid crystal (LC) materials in the frequency range 140-165 GHz is described. The electrical characteristics are obtained by curve fitting computed transmission coefficients to the experimental spectral response of a new class of electronically reconfigurable frequency selective surface. The periodic structure is designed to yield bandpass filter characteristics with and without an applied bias control voltage in order to measure the tunability of the LC material which is inserted in a 705 µm-thick cavity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we explore ways to address the issue of dataset bias in person re-identification by using data augmentation to increase the variability of the available datasets, and we introduce a novel data augmentation method for re-identification based on changing the image background. We show that use of data augmentation can improve the cross-dataset generalisation of convolutional network based re-identification systems, and that changing the image background yields further improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation into the stability of metal insulator semiconductor (MIS) transistors based on alpha-sexithiophene is reported. In particular the kinetics of the threshold voltage shift upon application of a gate bias has been determined. The kinetics follow a stretched-hyperbola type behavior, in agreement with the formalism developed to explain metastability in amorphous-silicon thin film transistors. Using this model, quantification of device stability is possible. Temperature-dependent measurements show that there are two processes involved in the threshold voltage shift, one occurring at T approximate to 220 K and the other at T approximate to 300 K. The latter process is found to be sample dependent. This suggests a relation between device stability and alpha-sexithiophene deposition parameters. Copyright (c) 2005 John Wiley A Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ein Drittel des weltweiten gesamten Energiebedarfs wird durch Gebäude verbraucht. Um diesen Energiebedarf teilweise zu decken, den erheblichen Energieverbrauch zu reduzieren und weiterhin andere Gebäudefunktionen beizubehalten, ist Gebäudeintegrierte Photovoltaik (BIPV) eine der am besten geeigneten Lösungen für die Gebäudenanwendung. Im Bezug auf eine Vielzahl von Gestalltungsmöglichkeiten, sind die Randbedingungen der BIPV-Anwendungen eindeutig anders im Vergleich zu Standard-PV-Anwendungen, insbesondere bezüglich der Betriebstemperatur. Bisher gab es nicht viele Informationen zu den relevanten thermischen Auswirkungen auf die entsprechenden elektrischen Eigenschaften zusammen mit thermischen und mechanischen relevanten Gebäudenfunktionen. Die meisten Hersteller übernehmen diese Eigenschaften von entsprechenden PV-Modulen und konventionellen Bauprodukten Normen, die zur ungenauen System- und Gebäudeplanungen führen. Deshalb ist die Untersuchung des thermischen Einflusses auf elektrische, thermische sowie mechanische Eigenschaften das Hauptziel der vorliegenden Arbeit. Zunächst wird das Temperatur-Model mit dem Power-Balance-Konzept erstellt. Unter Berücksichtigung der variablen Installationsmöglichkeiten und Konfigurationen des Moduls wird das Model auf Basis dynamischer und stationär Eigenschaften entwickelt. Im Hinblick auf die dynamische Simulation können der Energieertrag und Leistung zusammen mit der thermischen Gebäudesimulation in Echtzeit simuliert werden. Für stationäre Simulationen können die relevanten Gebäudefunktionen von BIPV-Modulen sowohl im Sommer als auch im Winter simuliert werden. Basierend auf unterschiedlichen thermischen und mechanischen Last-Szenarien wurde darüber hinaus das mechanische Model zusammen mit Variationen von Belastungsdauer, Montagesystem und Verkapselungsmaterialien entwickelt. Um die Temperatur- und Mechanik-Modelle zu validieren, wurden die verschiedenen Prüfeinrichtungen zusammen mit neuen Testmethoden entwickelt. Bei Verwendung der Prüfanlage „PV variable mounting system“ und „mechanical testing equipment“ werden zudem die verschiedenen Szenarien von Montagesystemen, Modul-Konfigurationen und mechanischen Belastungen emuliert. Mit der neuen Testmethode „back-bias current concept“ können zum einen die solare Einstrahlung und bestimmte Betriebstemperaturen eingestellt werden. Darüber hinaus wurden mit den eingangs erwähnten validierten Modellen das jeweilige elektrische, thermische und mechanische Verhalten auf andere Konfigurationen bewertet. Zum Abschluss wird die Anwendung von Software-Tools bei PV-Herstellern im Hinblick auf die entsprechenden Modellentwicklungen thematisiert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports real-time observations and detailed modeling of the transient response of thin aqueous films bounded by a deformable surface to external mechanical and electrical perturbations. Such films, tens to hundreds of nanometers thick, are confined between a molecularly smooth mica plate and a deformable mercury/electrolyte interface on a protuberant drop at a sealed capillary tube. When the mercury is negatively charged, the water forms a wetting film on mica, stabilized by electrical double layer forces. Mechanical perturbations are produced by driving the mica plate toward or by retracting the mica plate from the mercury surface. Electrical perturbations are applied to change the electrical double layer interaction between the mica and the mercury by imposing a step change of the bias voltage between the mercury and the bulk electrolyte. A theoretical model has been developed that can account for these observations quantitatively. Comparison between experiments and theory indicates that a no-slip hydrodynamic boundary condition holds at the molecularly smooth mica/electrolyte surface and at the deformable mercury/electrolyte interface. An analysis of the transient response based on the model elucidates the complex interplay between disjoining pressure, hydrodynamic forces, and surface deformations. This study also provides insight into the mechanism and process of droplet coalescence and reveals a novel, counterintuitive mechanism that can lead to film instability and collapse when an attempt is made to thicken the film by pulling the bounding mercury and mica phases apart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diamond-like carbon (DLC) films were grown from radiofrequency plasmas of acetylene-argon mixtures, at different excitation powers, P. The effects of this parameter on the plasma potential, electron density, electron temperature, and plasma activity were investigated using a Langmuir probe. The mean electron temperature increased from about 0.5 to about 7.0 eV while the mean electron density decreased from about 1.2x10(9) to about 0.2x10(9) cm(-3) as P was increased from 25 to 150 W. Both the plasma potential and the plasma activity were found to increase with increasing P. Through actinometric optical emission spectrometry, the relative concentrations of CH, [CH], and H, [H], in the discharge were mapped as a function of the applied power. A rise in [H] and a fall in [CH] with increasing P were observed and are discussed in relation to the plasma characteristics and the subimplantation model. The optical properties of the films were calculated from ultraviolet-visible spectroscopic data; the surface resistivity was measured by the two-point probe method. The optical gap, E(G), and the surface resistivity, rho(s), fall with increasing P. E(G) and rho(s) are in the ranges of about 2.0-1.3 eV and 10(14)-10(16) Omega/square, respectively. The plasma power also influences the film self-bias, V(b), via a linear dependence, and the effect of V(b) on ion bombardment during growth is addressed together with variation in the relative densities of sp(2) and sp(3) bonds in the films as determined by Raman spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical and in-plane electrical transport in InAs/InP semiconductors wires and dots have been investigated by conductive atomic force microscopy (C-AFM) and electrical measurements in processed devices. Localized I-V spectroscopy and spatially resolved current images (at constant bias), carried out using C-AFM in a controlled atmosphere at room temperature, show different conductances and threshold voltages for current onset on the two types of nanostructures. The processed devices were used in order to access the in-plane conductance of an assembly with a reduced number of nanostructures. On these devices, signature of two-level random telegraph noise (RTN) in the current behavior with time at constant bias is observed. These levels for electrical current can be associated to electrons removed from the wetting layer and trapped in dots and/or wires. A crossover from conduction through the continuum, associated to the wetting layer, to hopping within the nanostructures is observed with increasing temperature. This transport regime transition is confirmed by a temperature-voltage phase diagram. © 2005 Materials Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CdTe and Cu(In,Ga)Se2 (CIGS) thin film solar cells are fabricated, electrically characterized and modelled in this thesis. We start from the fabrication of CdTe thin film devices where the R.F. magnetron sputtering system is used to deposit the CdS/CdTe based solar cells. The chlorine post-growth treatment is modified in order to uniformly cover the cell surface and reduce the probability of pinholes and shunting pathways creation which, in turn, reduces the series resistance. The deionized water etching is proposed, for the first time, as the simplest solution to optimize the effect of shunt resistance, stability and metal-semiconductor inter-diffusion at the back contact. In continue, oxygen incorporation is proposed while CdTe layer deposition. This technique has been rarely examined through R.F sputtering deposition of such devices. The above experiments are characterized electrically and optically by current-voltage characterization, scanning electron microscopy, x-ray diffraction and optical spectroscopy. Furthermore, for the first time, the degradation rate of CdTe devices over time is numerically simulated through AMPS and SCAPS simulators. It is proposed that the instability of electrical parameters is coupled with the material properties and external stresses (bias, temperature and illumination). Then, CIGS materials are simulated and characterized by several techniques such as surface photovoltage spectroscopy is used (as a novel idea) to extract the band gap of graded band gap CIGS layers, surface or bulk defect states. The surface roughness is scanned by atomic force microscopy on nanometre scale to obtain the surface topography of the film. The modified equivalent circuits are proposed and the band gap graded profiles are simulated by AMPS simulator and several graded profiles are examined in order to optimize their thickness, grading strength and electrical parameters. Furthermore, the transport mechanisms and Auger generation phenomenon are modelled in CIGS devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Why do people take longer to associate the word “love” with outgroup words (incongruent condition) than with ingroup words (congruent condition)? Despite the widespread use of the implicit association test (IAT), it has remained unclear whether this IAT effect is due to additional mental processes in the incongruent condition, or due to longer duration of the same processes. Here, we addressed this previously insoluble issue by assessing the spatiotemporal evolution of brain electrical activity in 83 participants. From stimulus presentation until response production, we identified seven processes. Crucially, all seven processes occurred in the same temporal sequence in both conditions, but participants needed more time to perform one early occurring process (perceptual processing) and one late occurring process (implementing cognitive control to select the motor response) in the incongruent compared with the congruent condition. We also found that the latter process contributed to individual differences in implicit bias. These results advance understanding of the neural mechanics of response time differences in the IAT: They speak against theories that explain the IAT effect as due to additional processes in the incongruent condition and speak in favor of theories that assume a longer duration of specific processes in the incongruent condition. More broadly, our data analysis approach illustrates the potential of electrical neuroimaging to illuminate the temporal organization of mental processes involved in social cognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT Transcutaneous electrical nerve stimulation (TENS) is a promising therapy for non-neurogenic lower urinary tract dysfunction and might also be a valuable option in patients with an underlying neurological disorder. OBJECTIVE We systematically reviewed all available evidence on the efficacy and safety of TENS for treating neurogenic lower urinary tract dysfunction. EVIDENCE ACQUISITION The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement. EVIDENCE SYNTHESIS After screening 1943 articles, 22 studies (two randomised controlled trials, 14 prospective cohort studies, five retrospective case series, and one case report) enrolling 450 patients were included. Eleven studies reported on acute TENS and 11 on chronic TENS. In acute TENS and chronic TENS, the mean increase of maximum cystometric capacity ranged from 69ml to 163ml and from 4ml to 156ml, the mean change of bladder volume at first detrusor overactivity from a decrease of 13ml to an increase of 175ml and from an increase of 10ml to 120ml, a mean decrease of maximum detrusor pressure at first detrusor overactivity from 18 cmH20 to 72 cmH20 and 8 cmH20, and a mean decrease of maximum storage detrusor pressure from 20 cmH20 to 58 cmH2O and from 3 cmH20 to 8 cmH2O, respectively. In chronic TENS, a mean decrease in the number of voids and leakages per 24h ranged from 1 to 3 and from 0 to 4, a mean increase of maximum flow rate from 2ml/s to 7ml/s, and a mean change of postvoid residual from an increase of 26ml to a decrease of 85ml. No TENS-related serious adverse events have been reported. Risk of bias and confounding was high in most studies. CONCLUSIONS Although preliminary data suggest TENS might be effective and safe for treating neurogenic lower urinary tract dysfunction, the evidence base is poor and more reliable data from well-designed randomised controlled trials are needed to make definitive conclusions. PATIENT SUMMARY Early data suggest that transcutaneous electrical nerve stimulation might be effective and safe for treating neurogenic lower urinary tract dysfunction, but more reliable evidence is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Films of amorphous silicon (a-Si) were prepared by r.f. sputtering in a Ne plasma without the addition of hydrogen or a halogen. The d.c. dark electrical conductivity, he optical gap and the photoconductivity of the films were investigated for a range of preparation conditions, the sputtering gas pressure, P, the target-substrate spacing, d, the self-bias voltage, Vsb, on the target and the substrate temperature, Ts. The dependence of the electrical and optical properties on these conditions showed that various combinations of P, d and Vsb, at a constant Ts, giving the same product (Pd/V sb) result in films with similar properties, provided that P, d and Vsb remain vithin a certain range. Variation of Pd/Vsb between about 0.2 and 0.8 rrTorr.cm!V varied the dark conductivity over about 4 orders of magnitude, the optical gap by 0.5 eV and the photoconductivity over 4-5 orders of magnitude. This is attributed to controlling the density-of-states distribution in the mobility gap. The temperature-dependence of photoconductivity and the photoresponse of undoped films are in support of this conclusion. Films prepared at relatively high (Pd/Vsb) values and Ts=300 ºc: exhibited low dark-conductivity and high thermal activation energy, optical gap and photoresponse, characteristic properties of a 'low density-of-states material. P-type doping with group-Ill elements (Al, B and Ga) by sputtering from a composite target or from a predoped target (B-.doped) was investigated. The systematic variation of room-temperature conductivity over many orders of magnitude and a Fermi-level shift of about 0.7 eV towards the valence-band edge suggest that substitutional doping had taken place. The effects of preparation conditions on doping efficiency were also investigated. The post-deposition annealing of undoped and doped films were studied for a temperature range from 250 ºC to 470 ºC. It was shown that annealing enhanced the doping efficiency considerably, although it had little effect on the basic material (a-Si) prepared at the optimum conditions (Pd/Vsb=0.8 mTorr.cm/V and Ts=300 $ºC). Preliminary experiments on devices imply potential applications of the present material, such as p-n and MS junctions.