939 resultados para Electric meters, Recording.
Resumo:
This work describes an optical device for the simultaneous recording of shadowgrams and schlieren images, and some results are presented concerning its applications to the study of plasma assisted flow control in airfoil models. This approach offers many advantages in comparison to other methods, specially because the use of tracer particles (like smoke in wind tunnels) is not required for the experiments, thus avoiding contaminations in the electric discharges or air flows. Besides, while schlieren images reveal the refractive index gradients in the area of study, shadowgrams detect the second order spatial derivatives of the refractive indexes. Therefore, the simultaneous recording of these different images may give interesting information about the phenomena under study. In this paper, these images were used to confirm the existence of vortex structures in the flow induced by corona discharges on airfoil models. These structures are a possible explanation for the effects of drag reduction and lift force increasing, which have been reported in experiments of plasma assisted Aerodynamics.
Resumo:
This work describes an optical device for the simultaneous recording of shadowgrams and schlieren images, and some results are presented concerning its application to the study of plasma assisted flow control in airfoil models. This approach offers many advantages in comparison to other methods, specially because the use of tracer particles (like smoke in wind tunnels) is not required for the experiments, thus avoiding contaminations in the electric discharges or air flows. Besides, while schlieren images reveal the refractive index gradients in the area of study, shadowgrams detect the second order spatial derivatives of the refractive indexes. Therefore, the simultaneous recording of these different images may give interesting information about the phenomena under study.
Resumo:
The measurement of the phase shift φ between the transmited and difracted beams interfering along the same direction behind the hologram recorded in a photorefractive crystal is directly and accurately measured using a self-stabilized recording technique. The measured phase shift as a function of the applied electric field allows computing the Debye screening lenght and the effectively applied field coefficient of an undoped Bi 12TiO 20 crystal. The result is in good agreement with the already available information about this sample. © 2008 American Institute of Physics.
Resumo:
This paper presents a general modeling approach to investigate and to predict measurement errors in active energy meters both induction and electronic types. The measurement error modeling is based on Generalized Additive Model (GAM), Ridge Regression method and experimental results of meter provided by a measurement system. The measurement system provides a database of 26 pairs of test waveforms captured in a real electrical distribution system, with different load characteristics (industrial, commercial, agricultural, and residential), covering different harmonic distortions, and balanced and unbalanced voltage conditions. In order to illustrate the proposed approach, the measurement error models are discussed and several results, which are derived from experimental tests, are presented in the form of three-dimensional graphs, and generalized as error equations. © 2009 IEEE.
Resumo:
This paper proposes a new approach for optimal phasor measurement units placement for fault location on electric power distribution systems using Greedy Randomized Adaptive Search Procedure metaheuristic and Monte Carlo simulation. The optimized placement model herein proposed is a general methodology that can be used to place devices aiming to record the voltage sag magnitudes for any fault location algorithm that uses voltage information measured at a limited set of nodes along the feeder. An overhead, three-phase, three-wire, 13.8 kV, 134-node, real-life feeder model is used to evaluate the algorithm. Tests show that the results of the fault location methodology were improved thanks to the new optimized allocation of the meters pinpointed using this methodology. © 2011 IEEE.
Resumo:
This paper presents a practical experimentation for comparing reactive/non-active energy measures, considering three-phase four-wire non-sinusoidal and unbalanced circuits, involving five different commercial electronic meters. The experimentation set provides separately voltage and current generation, each one with any waveform involving up to fifty-first harmonic components, identically compared with acquisitions obtained from utility. The experimental accuracy is guaranteed by a class A power analyzer, according to IEC61000-4-30 standard. Some current and voltage combination profiles are presented and confronted with two different references of reactive/non-active calculation methodologies; instantaneous power theory and IEEE 1459-2010. The first methodology considers the instantaneous power theory, present into the advanced mathematical internal algorithm from WT3000 power analyzer, and the second methodology, accomplish with IEEE 1459-2010 standard, uses waveform voltage and current acquisition from WT3000 as input data for a virtual meter developed on Mathlab/Simulink software. © 2012 IEEE.
Resumo:
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.
Resumo:
Covert brain activity related to task-free, spontaneous (i.e. unrequested), emotional evaluation of human face images was analysed in 27-channel averaged event-related potential (ERP) map series recorded from 18 healthy subjects while observing random sequences of face images without further instructions. After recording, subjects self-rated each face image on a scale from “liked” to “disliked”. These ratings were used to dichotomize the face images into the affective evaluation categories of “liked” and “disliked” for each subject and the subjects into the affective attitudes of “philanthropists” and “misanthropists” (depending on their mean rating across images). Event-related map series were averaged for “liked” and “disliked” face images and for “philanthropists” and “misanthropists”. The spatial configuration (landscape) of the electric field maps was assessed numerically by the electric gravity center, a conservative estimate of the mean location of all intracerebral, active, electric sources. Differences in electric gravity center location indicate activity of different neuronal populations. The electric gravity center locations of all event-related maps were averaged over the entire stimulus-on time (450 ms). The mean electric gravity center for disliked faces was located (significant across subjects) more to the right and somewhat more posterior than for liked faces. Similar differences were found between the mean electric gravity centers of misanthropists (more right and posterior) and philanthropists. Our neurophysiological findings are in line with neuropsychological findings, revealing visual emotional processing to depend on affective evaluation category and affective attitude, and extending the conclusions to a paradigm without directed task.
Resumo:
Objectives: Although behavioral studies have demonstrated that normative affective traits modulate the processing of facial and emotionally charged stimuli, direct electrophysiological evidence for this modulation is still lacking. Methods: Event-related potential (ERP) data associated with personal, traitlike approach- or withdrawal-related attitude (assessed post-recording and 14 months later) were investigated in 18 subjects during task-free (i.e. unrequested, spontaneous) emotional evaluation of faces. Temporal and spatial aspects of 27 channel ERP were analyzed with microstate analysis and low resolution electromagnetic tomography (LORETA), a new method to compute 3 dimensional cortical current density implemented in the Talairach brain atlas. Results: Microstate analysis showed group differences 132-196 and 196-272 ms poststimulus, with right-shifted electric gravity centers for subjects with negative affective attitude. During these (over subjects reliably identifiable) personality-modulated, face-elicited microstates, LORETA revealed activation of bilateral occipito-temporal regions, reportedly associated with facial configuration extraction processes. Negative compared to positive affective attitude showed higher activity right temporal; positive compared to negative attitude showed higher activity left temporo-parieto-occipital. Conclusions: These temporal and spatial aspects suggest that the subject groups differed in brain activity at early, automatic, stimulus-related face processing steps when structural face encoding (configuration extraction) occurs. In sum, the brain functional microstates associated with affect-related personality features modulate brain mechanisms during face processing already at early information processing stages.
Resumo:
Includes bibliographical references (p. 49).
Resumo:
Mode of access: Internet.
Resumo:
This paper proposes a method for scheduling tariff time periods for electricity consumers. Europe will see a broader use of modern smart meters for electricity at residential consumers which must be used for enabling demand response. A heuristic-based method for tariff time period scheduling and pricing is proposed which considers different consumer groups with parameters studied a priori, taking advantage of demand response potential for each group and the fairness of electricity pricing for all consumers. This tool was applied to the case of Portugal, considering the actual network and generation costs, specific consumption profiles and overall electricity low voltage demand diagram. The proposed method achieves valid results. Its use will provide justification for the setting of tariff time periods by energy regulators, network operators and suppliers. It is also useful to estimate the consumer and electric sector benefits from changes in tariff time periods.
Resumo:
Hypercapitalism, with its "knowledge economy", is the form of capitalism under which thought itself is produced, commodified, and exchanged within the globally integrated system of communication technologies. As such, hypercapitalism may be seen as not so much a revolution, but rather an evolution: the progressively thorough, inexorable totalisation of social relations by Capital. The study on which this paper is based synthesises the sociological perspectives of Marx (1970, 1844/1975, 1846/1972, 1976, 1978, 1981) and Adorno (1951/1974, 1991; Horkheimer & Adorno, 1944/1998), and the Critical Discourse perspectives of Fairclough (1989, 1992) and Lemke (1995) to argue that alienated thought and language are the fundamental, irreducible commodity-forms of Cybersociety’s knowledge economy.