955 resultados para Electric connectors.
Resumo:
As a good solution to the shortage and environmental unfriendliness of fossil fuels, plug-in electric vehicles (PEVs) attract much interests of the public. To investigate the problems caused by the integration of numerous PEVs, a lot of research work has been done on the grid impacts of PEVs in aspects including thermal loading, voltage regulation, transformer loss of life, unbalance, losses, and harmonic distortion levels. This paper surveys the-state-of-the-art of the research in this area and outline three possible measures for a power grid company to make full use of PEVs.
Resumo:
The University of Queensland UltraCommuter concept is an ultra- light, low-drag, hybrid-electric sports coupe designed to minimize energy consumption and environmental impact while enhancing the performance, styling, features and convenience that motorists enjoy. This paper presents a detailed simulation study of the vehicle's performance and fuel economy using ADVISOR, including a detailed description of the component models and parameters assumed. Results from the study include predictions of a 0-100 kph acceleration time of ≺9s, and top speed of 170 kph, an electrical energy consumption of ≺67 Wh/km in ZEV mode and a petrol-equivalent fuel consumption of ≺2.5 L/100 km in charge-sustaining HEV mode. Overall, the results of the ADVISOR modelling confirm the UltraCommuter's potential to achieve high performance with high efficiency, and the authors look forward to a confirmation of these estimates following completion of the vehicle.
Resumo:
This paper presents a new simplified parametric analysis technique for the design of fuel cell and hybrid-electric vehicles. The technique utilizes a comprehensive set of ∼30 parameters to fully characterize the vehicle platform, powertrain components, vehicle performance requirements and driving conditions. It is best applied to the sizing of powertrain components and prediction of energy consumption in a vehicle. This new parametric technique makes a good complement to existing vehicle simulation software packages and therefore represents a potentially valuable tool for the hybrid vehicle designer.
Resumo:
Investigates the braking performance requirements of the UltraCommuter, a lightweight series hybrid electric vehicle currently under development at the University of Queensland. With a predicted vehicle mass of 600 kg and two in-wheel motors each capable of 500 Nm of peak torque, decelerations up to 0.46 g are theoretically possible using purely regenerative braking. With 99% of braking demands less than 0.35 g, essentially all braking can be regenerative. The wheel motors have sufficient peak torque capability to lock the rear wheels in combination with front axle braking, eliminating the need for friction braking at the rear. Emergency braking levels approaching 1 g are achieved by supplementation with front disk brakes. This paper presents equations describing the peak front and rear axle braking forces which occur under straight line braking, including gradients. Conventionally, to guarantee stability, mechanical front/rear proportioning of braking effort ensures that the front axle locks first. In this application, all braking is initially regenerative at the rear, and an adaptive ''by-wire'' proportioning system presented ensures this stability requirement is still satisfied. Front wheel drive and all wheel drive systems are also discussed. Finally, peak and continuous performance measures, not commonly provided for friction brakes, are derived for the UltraCommuter's motor capability and range of operation.
Resumo:
The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the results strongly suggest that the inclusion of ultracapacitors in the electric vehicle does not make sense from a lifecycle cost perspective. Furthermore, a comparison with results from earlier work shows that this outcome is highly dependant upon the efficiency and cost of the battery under consideration. However, it is likely that the lifecycle cost benefits of ultracapacitors in these electric vehicles would be, at most, marginal and do not justify the additional capital costs and system complexity that would be incurred in the vehicle
Resumo:
The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles (BEVs) is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using a custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the lifecycle cost benefits as simulated appear to be marginal, and are heavily influenced by the incremental cost of power components. However, additional factors are identified which, in reality, will drive ultracapacitors towards viability in electric vehicle applications.
Resumo:
The key to reducing cost of electric vehicles is integration. All too often systems such as the motor, motor controller, batteries and vehicle chassis/body are considered as separate problems. The truth is that a lot of trade-offs can be made between these systems, causing an overall improvement in many areas including total cost. Motor controller and battery cost have a relatively simple relationship; the less energy lost in the motor controller the less energy that has to be carried in the batteries, hence the lower the battery cost. A motor controller’s cost is primarily influenced by the cost of the switches. This paper will therefore present a method of assessing the optimal switch selection on the premise that the optimal switch is the one that produces the lowest system cost, where system cost is the cost of batteries + switches.
Resumo:
Electric vehicle battery packs require DC circuit breakers for safety. These must break thousands of Amps DC at hundreds of Volts. The Sunshark solar racing car has a 140V 17Ahr battery box which needs such a breaker. A static design using 200V MOSFETs to interrupt the fault current is presented. The design specification, decisions and proposed solution circuit are given. The current sensing technique,MOSFET overvoltage protection, and DC bus capacitor precharging scheme are specific focuses. Simulation results are presented and discussed.
Resumo:
This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.
Resumo:
Plug-in electric vehicles will soon be connected to residential distribution networks in high quantities and will add to already overburdened residential feeders. However, as battery technology improves, plug-in electric vehicles will also be able to support networks as small distributed generation units by transferring the energy stored in their battery into the grid. Even though the increase in the plug-in electric vehicle connection is gradual, their connection points and charging/discharging levels are random. Therefore, such single-phase bidirectional power flows can have an adverse effect on the voltage unbalance of a three-phase distribution network. In this article, a voltage unbalance sensitivity analysis based on charging/discharging levels and the connection point of plug-in electric vehicles in a residential low-voltage distribution network is presented. Due to the many uncertainties in plug-in electric vehicle ratings and connection points and the network load, a Monte Carlo-based stochastic analysis is developed to predict voltage unbalance in the network in the presence of plug-in electric vehicles. A failure index is introduced to demonstrate the probability of non-standard voltage unbalance in the network due to plug-in electric vehicles.
Resumo:
Solutions to remedy the voltage disturbances have been mostly suggested only for industrial customers. However, not much research has been done on the impact of the voltage problems on residential facilities. This paper proposes a new method to reduce the effect of voltage dip and swell in smart grids equipped by communication systems. To reach this purpose, a voltage source inverter and the corresponding control system are employed. The behavior of a power system during voltage dip and swell are analyzed. The results demonstrate reasonable improvement in terms of voltage dip and swell mitigation. All simulations are implemented in MATLAB/Simulink environment.
Resumo:
This paper presents an analytical method to analyze the effect of X to R ratio as well as impedance value of branches on observability of a network based on un-decoupled formulation of state estimation (SE) and null space of matrices. The results showed that the X to R ratio of branches had no effect on the observability of networks. In addition, it was shown that observability of some networks was affected by impedance values while some others were not affected. In addition, for branch observability analysis of radial network, a simple and quick method is developed. Illustrative examples of the network under transmission and distribution voltages demonstrate the effectiveness of the proposed methods.
Resumo:
The experiences of the loss reduction projects in electric power distribution companies (EPDCs) of Iran are presented. The loss reduction methods, which are proposed individually by 14 EPDCs, corresponding energy saving (ES), Investment costs (IC), and loss rate reductions are provided. In order to illustrate the effectiveness and performance of the loss reduction methods, three parameters are proposed as energy saving per investment costs (ESIC), energy saving per quantity (ESPQ), and investment costs per quantity (ICPQ). The overall ESIC of 14 EPDC as well as individual average and standard deviation of the EISC for each method is presented and compared. In addition, the average and standard deviation of the ESPQs and ICPQs for the loss reduction methods, individually, are provided and investigated. These parameters are useful for EPDCs that intend to reduce the electric losses in distribution networks as a benchmark and as a background in the planning purposes.
Resumo:
In this paper, a loss reduction planning in electric distribution networks is presented based on the successful experiences in distribution utilities of IRAN and some developed countries. The necessary technical and economical parameters of planning are calculated from related projects in IRAN. Cost, time, and benefits of every sub-program including seven loss reduction approaches are determined. Finally, the loss reduction program, the benefit per cost, and the return of investment in optimistic and pessimistic conditions are introduced.
Resumo:
Guitar technology underwent significant changes in the 20th century in the move from acoustic to electric instruments. In the first part of the 21st century, the guitar continues to develop through its interaction with digital technologies. Such changes in guitar technology are usually grounded in what we might call the "cultural identity" of the instrument: that is, the various ways that the guitar is used to enact, influence and challenge sociocultural and musical discourses. Often, these different uses of the guitar can be seen to reflect a conflict between the changing concepts of "noise" and "musical sound."