926 resultados para Elbow Flexor Muscles
Resumo:
Study Design. Cross-sectional study. Objective. This study compared neck muscle activation patterns during and after a repetitive upper limb task between patients with idiopathic neck pain, whiplash-associated disorders, and controls. Summary of Background Data. Previous studies have identified altered motor control of the upper trapezius during functional tasks in patients with neck pain. Whether the cervical flexor muscles demonstrate altered motor control during functional activities is unknown. Methods. Electromyographic activity was recorded from the sternocleidomastoid, anterior scalenes, and upper trapezius muscles. Root mean square electromyographic amplitude was calculated during and on completion of a functional task. Results. A general trend was evident to suggest greatest electromyograph amplitude in the sternocleidomastoid, anterior scalenes, and left upper trapezius muscles for the whiplash-associated disorders group, followed by the idiopathic group, with lowest electromyographic amplitude recorded for the control group. A reverse effect was apparent for the right upper trapezius muscle. The level of perceived disability ( Neck Disability Index score) had a significant effect on the electromyographic amplitude recorded between neck pain patients. Conclusions. Patients with neck pain demonstrated greater activation of accessory neck muscles during a repetitive upper limb task compared to asymptomatic controls. Greater activation of the cervical muscles in patients with neck pain may represent an altered pattern of motor control to compensate for reduced activation of painful muscles. Greater perceived disability among patients with neck pain accounted for the greater electromyographic amplitude of the superficial cervical muscles during performance of the functional task.
Resumo:
Exercise interventions are deemed essential for the effective management of patients with neck pain. However, there has been a lack of consensus on optimal exercise prescription, which has resulted from a paucity of studies to quantify the precise nature of muscle impairment, in people with neck pain. This masterclass will present recent research from our laboratory, which has utilized surface electromyography to investigate cervical flexor muscle impairment in patients with chronic neck pain. This research has identified deficits in the motor control of the deep and superficial cervical flexor muscles in people with chronic neck pain, characterized by a delay in onset of neck muscle contraction associated with movement of the upper limb. In addition, people with neck pain demonstrate an altered pattern of muscle activation, which is characterized by reduced deep cervical flexor muscle activity during a low load cognitive task and increased activity of the superficial cervical flexor muscles during both cognitive tasks and functional activities. The results have demonstrated the complex, multifaceted nature of cervical muscle impairment, which exists in people with a history of neck pain. In turn, this has considerable implications for the rehabilitation of muscle function in people with neck pain disorders. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this presentation is to pay tribute to the life's work of Professor Vladimir Janda, a key figure in the 20th Century rehabilitation movement. An accomplished neurologist, he founded the rehabilitation department at Charles University Hospital in Prague, Czechoslovakia. He was one of the seminal members of the Prague school of manual medicine and rehabilitation that expanded its influence throughout Central and Eastern Europe. His observations regarding muscle imbalances, faulty posture and gait, and their association with chronic pain syndromes, etiologically, diagnostically, and therapeutically, influenced the rehabilitation world. The authors comprise a multinational, multiprofessional group representative of rehabilitation specialists around the world who would like to pay tribute and give a final word of thanks to this innovative educator, clinician, and author.
Resumo:
Enquadramento: A prevalência da dor cervical crónica em adolescentes está a aumentar. Estudos recentes têm comprovado a eficácia de programas de educação com base na neurofisiologia da dor e exercício na diminuição da dor, incapacidade, medo e ansiedade associados à dor crónica. Contudo, apesar deste tipo de programas apresentar resultados promissores em adultos, a sua aplicação e efetividade em populações mais jovens tem sido pouco estudada. Objetivos: Avaliar a efetividade de um programa de educação com base na neurofisiologia da dor associado a exercícios na dor cervical crónica em adolescentes na 1) frequência e intensidade da dor, 2) incapacidade associada, 3) capacidade de resistência dos músculos flexores e extensores profundos da cervical e estabilizadores da omoplata, 4) ansiedade e 5) catastrofização. Métodos: Um total de 43 adolescentes com idade entre os 15 e os 18 anos da Escola Secundária Dr. João Carlos Celestino Gomes participaram neste estudo. Foram avaliadas a intensidade, duração e frequência da dor cervical, a incapacidade associada e a resistência dos músculos flexores e extensores profundos da cervical e estabilizadores da omoplata através dos testes dos flexores e extensores profundos e estabilizadores da omoplata, respetivamente. Foram também avaliados os níveis de ansiedade, catastrofização e perceção de mudança através do Inventário de Ansiedade Estado-Traço, da Escala de Catastrofização da Dor e da Escala de Perceção Global de Mudança. Resultados: O número de participantes a referir dor na semana que precedeu a avaliação no grupo experimental reduziu em 28,5%. Verificou-se uma interação significativa entre o momento de avaliação (antes da intervenção vs após a intervenção) e o grupo (experimental vs. controlo) para as variáveis resistência dos flexores profundos e catastrofização e um efeito do momento e do grupo (mas não uma interação) para a dor, incapacidade, resistência dos músculos extensores e estabilizadores da omoplata e ansiedade traço (p<0.05). Dos 21 participantes do grupo experimental, 85,7% referiu mudanças significativas na Escala de Perceção Global de Mudança. Conclusão: A educação em neurofisiologia da dor é uma intervenção que poderá ser utilizada em adolescentes com dor crónica, com resultados significativos na redução da dor, melhoria da resistência muscular dos músculos flexores e extensores profundos da cervical e estabilizadores da omoplata e diminuição da catastrofização.
Resumo:
O estudo pretende comparar o efeito de diferentes tipos de exercício físico na composição corporal e força em jovens desportistas do sexo feminino. A amostra foi constituída por vinte e seis desportistas femininas com idades compreendidas entre os 16 e 21 anos. Previamente ao início do estudo foram sujeitas ao 1º momento de avaliação, e após vinte e quatro semanas realizaram o segundo e ultimo momento de avaliação. Os parâmetros avaliados foram a composição corporal através da técnica de absorciometria radiológica de dupla energia; a força isocinética, nomeadamente os momentos de força (peak-torques) e rácios nos músculos extensores e flexores do joelho; a potência muscular nos membros inferiores através dos saltos verticais Squat jump e Countermovement jump. Posteriormente foram separadas em quatro grupos, grupo natação e exercício vibratório (NAT EV; n= 6), grupo natação (NAT; n=6), grupo futsal (FUTS; n= 6) e o grupo de controlo (CONT; n= 8). O grupo (NAT/EV), participou num programa de exercício vibratório (EV), três sessões por semana complementar ao treino de natação. O grupo de (NAT) cumpriu o plano de treino correspondente à disciplina, o grupo de (FUTS) cumpriu o treino referente à respetiva modalidade, o grupo controlo (CONT) realizou somente os exercícios físicos inerentes às aulas de educação física na escola. Resultados: Nas comparações inter grupos, verificou-se no grupo FUTS um aumento de 0,1 (g/m2) ± 0,0 nos valores da DMO-PE, quando comparado com o grupo de CONT, nas comparações intra grupo o grupo de NAT EV registou um acréscimo de 0,1 (g/m2) ± 0,1 nos valores da DMO-TC. Em conclusão, os resultados obtidos sugerem que a modalidade de FUTS promoveu mais alterações na composição corporal, nomeadamente na DMO-PE, no entanto dados conseguidos pelo grupo de NAT EV sugerem que o exercício vibratório poderá influenciar positivamente o incremento da DMO; ABSTRACT: The objective of this study was to compare the effect of different types of exercise on body composition and strength in young female athletes. The sample consisted of twenty-six female athletes aged between 16 and 21. Before the study there was a 1st evaluation point, after twenty-four weeks there was the 2nd and final evaluation. We evaluated body composition through x-ray absorptiometry technique of dual energy, isokinetic strength, including the peak-torques and ratios in the extensor and flexor muscles of the knee; the muscle power in the lower limbs was evaluatated through the vertical jumps Squat jump and countermovement jump. During the study they were separated into four groups, swimming exercise group and vibration (NAT EV; n = 6), swimming group (NAT; n= 6), footsal group (FUTS; n= 6) and control group (CONT; n= 8). The NAT/EV group, participated in a vibrating exercise program (EV), complementary to swimming training, with three sessions per week. The NAT group fulfilled the corresponding swimming workout plan, FUTS group fulfilled the training related to futsal, the CONT group only performed the usual exercises in physical education classes at school. Results: In intergroup comparisons, there was an increase in FUTS group of 0.1 (g / m2) ± 0.0 in the values of MBD-PE, when compared with the CONT group comparisons in intra-group group NAT EV increased by 0.1 (g / m2) ± 0.1 in BMD-TC values. In conclusion, the results suggest that FUTS group promoted more changes in body composition, particularly in BMD-PE, but data obtained by NAT EV group suggest that vibration exercise can positively influence the increase in BMD.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Educação Física, Programa de Pós-Graduação Strictu-Sensu em Educação Física, 2015.
Resumo:
We investigated the surface electromyogram response of six forearm muscles to falls onto the outstretched hand. The extensor carpi radialis longus, extensor carpi radialis brevis, extensor carpi ulnaris, abductor pollicis longus, flexor carpi radialis and flexor carpi ulnaris muscles were sampled from eight volunteers who underwent ten self-initiated falls. All muscles initiated prior to impact. Co-contraction is the most obvious surface electromyogram feature. The predominant response is in the radial deviators. The surface electromyogram timing we recorded would appear to be a complex anticipatory response to falling modified by the ef- fect on the forearm muscles following impact. The mitigation of the force of impact is probably more importantly through shoulder abduction and extension and elbow flexion rather than action of the forearm muscles.
Resumo:
The motor points of the skeletal muscles, mainly of interest to anatomists and physiologists, have recently attracted much attention from researchers in the field of functional electrical stimulation. The muscle motor point has been defined as the entry point of the motor nerve branch into the epimysium of the muscle belly. Anatomists have pointed out that many muscles in the limbs have multiple motor points. Knowledge of the location of nerve branches and terminal nerve entry points facilitates the exact insertion and the suitable selection of the number of electrodes required for each muscle for functional electrical stimulation. The present work therefore aimed to describe the number, location, and distribution of motor points in the human forearm muscles to obtain optimal hand function in many clinical situations. Twenty three adult human cadaveric forearms were dissected. The numbers of primary nerves and motor points for each muscle were tabulated. The mean numbers and the standard deviation were calculated and grouped in tables. Data analyses were performed with the use of a statistical analysis package (SPSS 13.0). The proximal third of the muscle was the usual part of the muscle that received the motor points. Most of the forearm muscles were innervated from the lateral side and deep surface of the muscle. The information in this study may also be usefully applied in selective denervation procedures to balance muscles in spastic upper limbs. Copyright © 2007 Via Medica.
Resumo:
INTRODUCTION: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is often greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. AIM: To determine if this preferential eccentric decline in strength is caused by declines in voluntary hamstring muscle activation. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±1800.s-1 and ±600.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused greater eccentric (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) than concentric knee flexor weakness (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, voluntary activation levels of the lateral hamstrings showed a significant decline (0.08%; 95% CI = 0.045 to 0.120; P<0.0001). In comparison, medial hamstring activation showed no change following intermittent running. CONCLUSION: Eccentric hamstring strength is decreased significantly following intermittent overground running. Voluntary activation deficits in the biceps femoris muscle are responsible for some portion of this weakness. The implications of this finding are significant because the biceps femoris muscle is the most frequently strained of all the hamstring muscles and because fatigue appears to play an important part in injury occurrence.
Resumo:
Introduction: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is sometimes greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. The purpose of this research was to determine whether declines in knee flexor strength following overground repeat sprints are caused by declines in voluntary activation of the hamstring muscles. Methods: Seventeen recreationally active males completed 3 sets of 6 by 20m overground sprints. Maximal isokinetic concentric and eccentric knee flexor and concentric knee extensor strength was determined at ±1800.s-1 and ±600.s-1 while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. Results: Overground repeat sprint running resulted in a significant decline in eccentric knee flexor strength (31.1 Nm; 95% CI = 21.8 to 40.3 Nm; p < 0.001). However, concentric knee flexor strength was not significantly altered (11.1 Nm; 95% CI= -2.8 to 24.9; p=0.2294). Biceps femoris voluntary activation levels displayed a significant decline eccentrically (0.067; 95% CI=0.002 to 0.063; p=0.0325). However, there was no significant decline concentrically (0.025; 95% CI=-0.018 to 0.043; p=0.4243) following sprinting. Furthermore, declines in average peak torque at -1800.s-1 could be explained by changes in hamstring activation (R2 = 0.70). Moreover, it was change in the lateral hamstring muscle activity that was related to the decrease in knee flexor torque (p = 0.0144). In comparison, medial hamstring voluntary activation showed no change for either eccentric (0.06; 95% CI = -0.033 to 0.102; p=0.298) or concentric (0.09; 95% CI = -0.03 to 0.16; p=0.298) muscle actions following repeat sprinting. Discussion: Eccentric hamstring strength is decreased significantly following overground repeat sprinting. Voluntary activation deficits in the biceps femoris muscle explain a large portion of this weakness. The implications of these findings are significant as the biceps femoris muscle is the most frequently strained of the knee flexors and fatigue is implicated in the aetiology of this injury.
Resumo:
Consideration was given to means of increasing the reliability and muscle specificity of paired associative stimulation (PAS) by utilising the phenomenon of crossed-facilitation. Eight participants completed three separate sessions: isometric flexor contractions of the left wrist at 20% of maximum voluntary contraction (MVC) simultaneously with PAS (20s intervals; 14 min duration) delivered at the right median nerve and left primary motor cortex (MI); isometric contractions at 20% of MVC: and PAS only ( 14 min). Eight further participants completed two sessions of longer duration PAS (28 min): either alone or in conjunction with flexion contractions of the left wrist. Thirty motor potentials (MEPs) were evoked in the right flexor (rFCR) and extensor (rECR) carpi radialis muscles by magnetic stimulation of left M1 Prior to the interventions, immediately post-intervention, and 10 min post-intervention. Both 14 and 28 min of combined PAS and (left wrist flexion) contractions resulted in reliable increases in rFCR MEP amplitude, which were not present in rECR. In the PAS only conditions, 14 min of stimulation gave rise to unreliable increases in MEP amplitudes in rFCR and rECR, whereas 28 min of PAS induced small (unreliable) changes only for rFCR. These results support the conclusion that changes in the excitability of the corticospinal pathway induced by PAS interact with those associated with contraction of the muscles ipsilateral to the site of cortical stimulation. Furthermore, focal contractions applied by the opposite limb increase the extent and muscle specificity of the induced changes in excitability associated with PAS. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P<0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.
Resumo:
OBJECTIVE: Interhemispheric inhibition (IHI) is typically examined via responses elicited in intrinsic hand muscles. As the cortical representations of proximal and distal muscles in the upper limb are distinguished in terms of their inter-hemispheric projections, we sought to determine whether the IHI parameters established for the hand apply more generally.
METHODS: We investigated IHI at 5 different conditioning stimulus (CS) intensities and a range of short-latency inter-stimulus intervals (ISIs) in healthy participants. Conditioning and test stimuli were delivered over the M1 representation of the right and left flexor carpi radialis respectively.
RESULTS: IHI increased as a function of CS intensity, and was present for ISIs between 7 and 15ms. Inhibition was most pronounced for the 10ms ISI at all CS intensities.
CONCLUSIONS: The range of parameters for which IHI is elicited in projections to the forearm is similar to that reported for the hand. The specific utility lies in delineation of stimulus parameters that permit both potentiation and attenuation of IHI to be assessed.
SIGNIFICANCE: In light of evidence that there is a greater density of callosal projections between cortical areas that represent proximal muscles than between those corresponding to distal limb muscles, and in view of the assumption that variations in functional connectivity to which such differences give rise may have important implications for motor behavior, it is critical to determine whether processes mediating the expression of IHI depend on the effector that is studied. This issue is of further broad significance given the practical utility of movements generated by muscles proximal to the wrist in the context of upper limb rehabilitation.
Resumo:
Chez les personnes post-AVC (Accident Vasculaire Cérébral), spasticité, faiblesse et toute autre coactivation anormale proviennent de limitations dans la régulation de la gamme des seuils des réflexes d'étirement. Nous avons voulu savoir si les déficits dans les influences corticospinales résiduelles contribuaient à la limitation de la gamme des seuils et au développement de la spasticité chez les patients post-AVC. La stimulation magnétique transcranienne (SMT) a été appliquée à un site du cortex moteur où se trouvent les motoneurones agissant sur les fléchisseurs et extenseurs du coude. Des potentiels évoqués moteurs (PEM) ont été enregistrés en position de flexion et d'extension du coude. Afin d'exclure l'influence provenant de l'excitabilité motoneuronale sur l'évaluation des influences corticospinales, les PEM ont été suscités lors de la période silencieuse des signaux électromyographiques (EMG) correspondant à un bref raccourcissement musculaire juste avant l'enclenchement de la SMT. Chez les sujets contrôles, il y avait un patron réciproque d'influences corticospinales (PEM supérieurs en position d'extension dans les extenseurs et vice-versa pour les fléchisseurs). Quant à la plupart des sujets post-AVC ayant un niveau clinique élevé de spasticité, la facilitation corticospinale dans les motoneurones des fléchisseurs et extenseurs était supérieure en position de flexion (patron de co-facilitation). Les résultats démontrent que la spasticité est associée à des changements substantiels des influences corticospinales sur les motoneurones des fléchisseurs et des extenseurs du coude.
Resumo:
Il existe plusieurs théories du contrôle moteur, chacune présumant qu’une différente variable du mouvement est réglée par le cortex moteur. On trouve parmi elles la théorie du modèle interne qui a émis l’hypothèse que le cortex moteur programme la trajectoire du mouvement et l’activité électromyographique (EMG) d’une action motrice. Une autre, appelée l’hypothèse du point d’équilibre, suggère que le cortex moteur établisse et rétablisse des seuils spatiaux; les positions des segments du corps auxquelles les muscles et les réflexes commencent à s’activer. Selon ce dernier, les paramètres du mouvement sont dérivés sans pré-programmation, en fonction de la différence entre la position actuelle et la position seuil des segments du corps. Pour examiner de plus près ces deux théories, nous avons examiné l’effet d’un changement volontaire de l’angle du coude sur les influences cortico-spinales chez des sujets sains en employant la stimulation magnétique transcrânienne (TMS) par-dessus le site du cortex moteur projetant aux motoneurones des muscles du coude. L’état de cette aire du cerveau a été évalué à un angle de flexion du coude activement établi par les sujets, ainsi qu’à un angle d’extension, représentant un déplacement dans le plan horizontal de 100°. L’EMG de deux fléchisseurs du coude (le biceps et le muscle brachio-radial) et de deux extenseurs (les chefs médial et latéral du triceps) a été enregistrée. L’état d’excitabilité des motoneurones peut influer sur les amplitudes des potentiels évoqués moteurs (MEPs) élicitées par la TMS. Deux techniques ont été entreprises dans le but de réduire l’effet de cette variable. La première était une perturbation mécanique qui raccourcissait les muscles à l'étude, produisant ainsi une période de silence EMG. La TMS a été envoyée avec un retard après la perturbation qui entraînait la production du MEP pendant la période de silence. La deuxième technique avait également le but d’équilibrer l’EMG des muscles aux deux angles du coude. Des forces assistantes ont été appliquées au bras par un moteur externe afin de compenser les forces produites par les muscles lorsqu’ils étaient actifs comme agonistes d’un mouvement. Les résultats des deux séries étaient analogues. Un muscle était facilité quand il prenait le rôle d’agoniste d’un mouvement, de manière à ce que les MEPs observés dans le biceps fussent de plus grandes amplitudes quand le coude était à la position de flexion, et ceux obtenus des deux extenseurs étaient plus grands à l’angle d’extension. Les MEPs examinés dans le muscle brachio-radial n'étaient pas significativement différents aux deux emplacements de l’articulation. Ces résultats démontrent que les influences cortico-spinales et l’activité EMG peuvent être dissociées, ce qui permet de conclure que la voie cortico-spinale ne programme pas l’EMG à être générée par les muscles. Ils suggèrent aussi que le système cortico-spinal établit les seuils spatiaux d’activation des muscles lorsqu’un segment se déplace d’une position à une autre. Cette idée suggère que des déficiences dans le contrôle des seuils spatiaux soient à la base de certains troubles moteurs d’origines neurologiques tels que l’hypotonie et la spasticité.