904 resultados para Earth dams.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web 1.0 referred to the early, read-only internet; Web 2.0 refers to the ‘read-write web’ in which users actively contribute to as well as consume online content; Web 3.0 is now being used to refer to the convergence of mobile and Web 2.0 technologies and applications. One of the most important developments in mobile 3.0 is geography: with many mobile phones now equipped with GPS, mobiles promise to “bring the internet down to earth” through geographically-aware, or locative media. The internet was earlier heralded as “the death of geography” with predictions that with anyone able to access information from anywhere, geography would no longer matter. But mobiles are disproving this. GPS allows the location of the user to be pinpointed, and the mobile internet allows the user to access locally-relevant information, or to upload content which is geotagged to the specific location. It also allows locally-specific content to be sent to the user when the user enters a specific space. Location-based services are one of the fastest-growing segments of the mobile internet market: the 2008 AIMIA report indicates that user access of local maps increased by 347% over the previous 12 months, and restaurant guides/reviews increased by 174%. The central tenet of cultural geography is that places are culturally-constructed, comprised of the physical space itself, culturally-inflected perceptions of that space, and people’s experiences of the space (LeFebvre 1991). This paper takes a cultural geographical approach to locative media, anatomising the various spaces which have emerged through locative media, or “the geoweb” (Lake 2004). The geoweb is such a new concept that to date, critical discourse has treated it as a somewhat homogenous spatial formation. In order to counter this, and in order to demonstrate the dynamic complexity of the emerging spaces of the geoweb, the paper provides a topography of different types of locative media space: including the personal/aesthetic in which individual users geotag specific physical sites with their own content and meanings; the commercial, like the billboards which speak to individuals as they pass in Minority Report; and the social, in which one’s location is defined by the proximity of friends rather than by geography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we search for evidence of the existence of a sub-chondritic 142Nd/144Nd reservoir that balances the Nd isotope chemistry of the Earth relative to chondrites. If present, it may reside in the source region of deeply sourced mantle plume material. We suggest that lavas from Hawai’i with coupled elevations in 186Os/188Os and 187Os/188Os, from Iceland that represent mixing of upper mantle and lower mantle components, and from Gough with sub-chondritic 143Nd/144Nd and high 207Pb/206Pb, are favorable samples that could reflect mantle sources that have interacted with an Early-Enriched Reservoir (EER) with sub-chondritic 142Nd/144Nd. High-precision Nd isotope analyses of basalts from Hawai’i, Iceland and Gough demonstrate no discernable 142Nd/144Nd deviation from terrestrial standards. These data are consistent with previous high-precision Nd isotope analysis of recent mantle-derived samples and demonstrate that no mantle-derived material to date provides evidence for the existence of an EER in the mantle. We then evaluate mass balance in the Earth with respect to both 142Nd/144Nd and 143Nd/144Nd. The Nd isotope systematics of EERs are modeled for different sizes and timing of formation relative to ε143Nd estimates of the reservoirs in the μ142Nd = 0 Earth, where μ142Nd is ((measured 142Nd/144Nd/terrestrial standard 142Nd/144Nd)−1 * 10−6) and the μ142Nd = 0 Earth is the proportion of the silicate Earth with 142Nd/144Nd indistinguishable from the terrestrial standard. The models indicate that it is not possible to balance the Earth with respect to both 142Nd/144Nd and 143Nd/144Nd unless the μ142Nd = 0 Earth has a ε143Nd within error of the present-day Depleted Mid-ocean ridge basalt Mantle source (DMM). The 4567 Myr age 142Nd–143Nd isochron for the Earth intersects μ142Nd = 0 at ε143Nd of +8 ± 2 providing a minimum ε143Nd for the μ142Nd = 0 Earth. The high ε143Nd of the μ142Nd = 0 Earth is confirmed by the Nd isotope systematics of Archean mantle-derived rocks that consistently have positive ε143Nd. If the EER formed early after solar system formation (0–70 Ma) continental crust and DMM can be complementary reservoirs with respect to Nd isotopes, with no requirement for significant additional reservoirs. If the EER formed after 70 Ma then the μ142Nd = 0 Earth must have a bulk ε143Nd more radiogenic than DMM and additional high ε143Nd material is required to balance the Nd isotope systematics of the Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictions that result from scientific research hold great appeal for decision-makers who are grappling with complex and controversial environmental issues, by promising to enhance their ability to determine a need for and outcomes of alternative decisions. A problem exists in that decision-makers and scientists in the public and private sectors solicit, produce, and use such predictions with little understanding of their accuracy or utility, and often without systematic evaluation or mechanisms of accountability. In order to contribute to a more effective role for ecological science in support of decision-making, this paper discusses three ``best practices'' for quantitative ecosystem modeling and prediction gleaned from research on modeling, prediction, and decision-making in the atmospheric and earth sciences. The lessons are distilled from a series of case studies and placed into the specific context of examples from ecological science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the power utilities around the world experienced spurious tripping of directional earth fault relays in their mesh distribution networks due to induced circulating currents. This circulating current is zero sequence and induced in the healthy circuit due to the zero sequence current flow resulting from a ground fault of a parallel circuit. This paper quantitatively discusses the effects of mutual coupling on earth fault protection of distribution systems. An actual spurious tripping event is analyzed to support the theory and to present options for improved resilience to spurious tripping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large igneous provinces (LIPs) are sites of the most frequently recurring, largest volume basaltic and silicic eruptions in Earth history. These large-volume (N1000 km3 dense rock equivalent) and large-magnitude (NM8) eruptions produce areally extensive (104–105 km2) basaltic lava flow fields and silicic ignimbrites that are the main building blocks of LIPs. Available information on the largest eruptive units are primarily from the Columbia River and Deccan provinces for the dimensions of flood basalt eruptions, and the Paraná–Etendeka and Afro-Arabian provinces for the silicic ignimbrite eruptions. In addition, three large-volume (675– 2000 km3) silicic lava flows have also been mapped out in the Proterozoic Gawler Range province (Australia), an interpreted LIP remnant. Magma volumes of N1000 km3 have also been emplaced as high-level basaltic and rhyolitic sills in LIPs. The data sets indicate comparable eruption magnitudes between the basaltic and silicic eruptions, but due to considerable volumes residing as co-ignimbrite ash deposits, the current volume constraints for the silicic ignimbrite eruptions may be considerably underestimated. Magma composition thus appears to be no barrier to the volume of magma emitted during an individual eruption. Despite this general similarity in magnitude, flood basaltic and silicic eruptions are very different in terms of eruption style, duration, intensity, vent configuration, and emplacement style. Flood basaltic eruptions are dominantly effusive and Hawaiian–Strombolian in style, with magma discharge rates of ~106–108 kg s−1 and eruption durations estimated at years to tens of years that emplace dominantly compound pahoehoe lava flow fields. Effusive and fissural eruptions have also emplaced some large-volume silicic lavas, but discharge rates are unknown, and may be up to an order of magnitude greater than those of flood basalt lava eruptions for emplacement to be on realistic time scales (b10 years). Most silicic eruptions, however, are moderately to highly explosive, producing co-current pyroclastic fountains (rarely Plinian) with discharge rates of 109– 1011 kg s−1 that emplace welded to rheomorphic ignimbrites. At present, durations for the large-magnitude silicic eruptions are unconstrained; at discharge rates of 109 kg s−1, equivalent to the peak of the 1991 Mt Pinatubo eruption, the largest silicic eruptions would take many months to evacuate N5000 km3 of magma. The generally simple deposit structure is more suggestive of short-duration (hours to days) and high intensity (~1011 kg s−1) eruptions, perhaps with hiatuses in some cases. These extreme discharge rates would be facilitated by multiple point, fissure and/or ring fracture venting of magma. Eruption frequencies are much elevated for large-magnitude eruptions of both magma types during LIP-forming episodes. However, in basaltdominated provinces (continental and ocean basin flood basalt provinces, oceanic plateaus, volcanic rifted margins), large magnitude (NM8) basaltic eruptions have much shorter recurrence intervals of 103–104 years, whereas similar magnitude silicic eruptions may have recurrence intervals of up to 105 years. The Paraná– Etendeka province was the site of at least nine NM8 silicic eruptions over an ~1 Myr period at ~132 Ma; a similar eruption frequency, although with a fewer number of silicic eruptions is also observed for the Afro- Arabian Province. The huge volumes of basaltic and silicic magma erupted in quick succession during LIP events raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, and paths and rates of ascent from magma reservoirs to the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth element geochemistry in carbonate rocks is utilized increasingly for studying both modern oceans and palaeoceanography, with additional applications for investigating water–rock interactions in groundwater and carbonate diagenesis. However, the study of rare earth element geochemistry in ancient rocks requires the preservation of their distribution patterns through subsequent diagenesis. The subjects of this study, Pleistocene scleractinian coral skeletons from Windley Key, Florida, have undergone partial to complete neomorphism from aragonite to calcite in a meteoric setting; they allow direct comparison of rare earth element distributions in original coral skeleton and in neomorphic calcite. Neomorphism occurred in a vadose setting along a thin film, with degradation of organic matter playing an initial role in controlling the morphology of the diagenetic front. As expected, minor element concentrations vary significantly between skeletal aragonite and neomorphic calcite, with Sr, Ba and U decreasing in concentration and Mn increasing in concentration in the calcite, suggesting that neomorphism took place in an open system. However, rare earth elements were largely retained during neomorphism, with precipitating cements taking up excess rare earth elements released from dissolved carbonates from higher in the karst system. Preserved rare earth element patterns in the stabilized calcite closely reflect the original rare earth element patterns of the corals and associated reef carbonates. However, minor increases in light rare earth element depletion and negative Ce anomalies may reflect shallow oxidized groundwater processes, whereas decreasing light rare earth element depletion may reflect mixing of rare earth elements from associated microbialites or contamination from insoluble residues. Regardless of these minor disturbances, the results indicate that rare earth elements, unlike many minor elements, behave very conservatively during meteoric diagenesis. As the meteoric transformation of aragonite to calcite is a near worst case scenario for survival of original marine trace element distributions, this study suggests that original rare earth element patterns may commonly be preserved in ancient limestones, thus providing support for the use of ancient marine limestones as proxies for marine rare earth element geochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Webb et al. (2009) described a late Pleistocenecoral sample wherein the diagenetic stabilization of original coral aragonite to meteoric calcite was halted more or less mid-way through the process, allowing direct comparison of pre-diagenetic and post-diagenetic microstructure and trace element distributions. Those authors found that the rare earth elements (REEs) were relatively stable during meteoric diagenesis, unlike divalent cations such as Sr,and it was thus concluded that original, in this case marine, REE distributions potentially could be preserved through the meteoric carbonate stabilization process that must have affected many, if not most, ancient limestones. Although this was not the case in the analysed sample, they noted that where such diagenesis took place in laterally transported groundwater, trace elements derived from that groundwater could be incorporated into diagenetic calcite, thus altering the initial REE distribution (Banner et al., 1988). Hence, the paper was concerned with the diagenetic behaviour of REEs in a groundwater-dominated karst system. The comment offered by Johannesson (2011) does not question those research results, but rather, seeks to clarify an interpretation made by Webb et al. (2009) of an earlier paper, Johannesson et al. (2006).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stromatolites consist primarily of trapped and bound ambient sediment and/or authigenic mineral precipitates, but discrimination of the two constituents is difficult where stromatolites have a fine texture. We used laser ablation-inductively coupled plasma-mass spectrometry to measure trace element (rare earth element – REE, Y and Th) concentrations in both stromatolites (domical and branched) and closely associated particulate carbonate sediment in interspaces (spaces between columns or branches) from bioherms within the Neoproterozoic Bitter Springs Formation, central Australia. Our high resolution sampling allows discrimination of shale-normalised REE patterns between carbonate in stromatolites and immediately adjacent, fine-grained ambient particulate carbonate sediment from interspaces. Whereas all samples show similar negative La and Ce anomalies, positive Gd anomalies and chondritic Y/Ho ratios, the stromatolites and non-stromatolite sediment are distinguishable on the basis of consistently elevated light REEs (LREEs) in the stromatolitic laminae and relatively depleted LREEs in the particulate sediment samples. Additionally, concentrations of the lithophile element Th are higher in ambient sediment samples than in stromatolites, consistent with accumulation of some fine siliciclastic detrital material in the ambient sediment but a near absence in the stromatolites. These findings are consistent with the stromatolites consisting dominantly of in situ carbonate precipitates rather than trapped and bound ambient sediment. Hence, high resolution trace element (REE + Y, Th) geochemistry can discriminate fine-grained carbonates in these stromatolites from coeval non-stromatolitic carbonate sediment and demonstrates that the sampled stromatolites formed primarily from in situ precipitation, presumably within microbial mats/biofilms, rather than by trapping and binding of ambient sediment. Identification of the source of fine carbonate in stromatolites is significant, because if it is not too heavily contaminated by trapped ambient sediment, it may contain geochemical biosignatures and/or direct evidence of the local water chemistry in which the precipitates formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A suite of new materials, based on chemical modification of kaolins, has been successfully prepared via manipulation of the kaolin structure and subsequent intercalation by CaCl2 and MgCl2. A standard kaolinite(KGa-1)and a commercially available halloysite (New Zealand china clay) were used for this study. The kaolins are given several cycles of intercalation and deintercalation using a common intercalant such as potassium acetate. The number of cycles given depends on the type of kaolin. After this treatment, both kaolinite and halloysite hydrate show considerable broadening of the (00l) reflections which indicate extensive exfoliation of the layers. In the case of kaolinite, exfoliated layers roll to form tubes similar to proper halloysite. Kaolins modified by the above treatment readily intercalate MgCl2 and CaCl2 from saturated solutions of these salts. On intercalation with CaCl2 and MgCl2, kaolinite layers expand to 10A and 9.8A, and those of halloysite to 12.8A and 15.5A, respectively. To our knowledge, this is the first report of successful intercalation of alkaline-earth halides by kaolins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the judiciary in common law systems is to create law, interpret law and uphold the law. As such decisions by courts on matters related to ecologically sustainable development, natural resource use and management and climate change make an important contribution to earth jurisprudence. There are examples where judicial decisions further the goals of earth jurisprudence and examples where decisions go against the principles of earth jurisprudence. This presentation will explore judicial approaches to standing in Australia and America. The paper will explore two trends in each jurisdiction. Approaches by American courts to standing will be examined in reference to climate change and environmental justice litigation. While Australian approaches to standing will be examined in the context of public interest litigation and environmental criminal negligence cases. The presentation will draw some conclusions about the role of standing in each of these cases and implications of this for earth jurisprudence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large igneous provinces (LIPs) host the most frequently recurring, largest volume basaltic & silicic eruptions on Earth. The largest volume (>1000 km^3 DRE) and magnitude (>M8) eruptions produce areally extensive (10^4-10^5 km^2) basaltic flow fields and sills, and silicic ignimbrites that are the main LIP building blocks. Basaltic and silicic eruptions have comparable magnitudes, but silicic ignimbrite volumes may be significantly underestimated due to unrecognized and correlated, but voluminous co-ignimbrite ash deposits. Magma composition is no barrier to individual eruption volume. Despite similar magnitudes, flood basaltic and silicic eruptions are very different in eruption mechanism, duration, intensity, vent configuration, and emplacement style. Flood basalts are dominantly effusive Hawaiian-Strombolian, with magma discharge rates of ~10^7-10^8 kg s^-1, and produce dominantly compound pahoehoe flow fields over eruption durations most likely >10 yrs. Most silicic eruptions are moderately to highly explosive, producing cocurrent pyroclastic fountains (rarely Plinian) and suggested to be of short-duration (hours to days) and high intensity (~10^11 kg s^-1). Eruption frequencies are elevated for largemagnitude eruptions of both magma types during LIP formation. In basalt-dominated provinces, large magnitude (>M8) eruptions have much shorter recurrence intervals (10^3-10^4 years) than similar magnitude silicic eruptions (~10^5 years). The huge volumes of magma erupted rapidly in LIPs raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, the paths and rates of ascent from magma reservoirs to the surface, and relative aerosol contributions to the stratosphere from the flood basaltic and rhyolitic eruptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in computational geodynamics are applied to explore the link between Earth’s heat, its chemistry and its mechanical behavior. Computational thermal-mechanical solutions are now allowing us to understand Earth patterns by solving the basic physics of heat transfer. This approach is currently used to solve basic convection patterns of terrestrial planets. Applying the same methodology to smaller scales delivers promising similarities between observed and predicted structures which are often the site of mineral deposits. The new approach involves a fully coupled solution to the energy, momentum and continuity equations of the system at all scales, allowing the prediction of fractures, shear zones and other typical geological patterns out of a randomly perturbed initial state. The results of this approach are linking a global geodynamic mechanical framework over regional-scale mineral deposits down to the underlying micro-scale processes. Ongoing work includes the challenge of incorporating chemistry into the formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral huanghoite with possible formula given as BaCe(CO3)2F and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of huanghoite displays three bands are at 1072, 1084 and 1091 cm−1 attributed to the symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of symmetric stretching vibration varies with mineral composition. Infrared spectroscopy of huanghoite show bands at 1319, 1382, 1422 and 1470 cm−1. No Raman bands of huanghoite were observed in these positions. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1 assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands for huanghoite are observed at 687, 704, 718 and 730 cm−1and assigned to the (CO3)2− ν2 bending modes. Raman bands are observed for huanghoite at around 627 cm−1 and are assigned to the (CO3)2− ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite, 714 cm−1 for northupite. Raman bands for huanghoite observed at 3259, 3484 and 3589 cm−1 are attributed to water stretching bands. Multiple bands are observed in the OH stretching region for bastnasite and parisite indicating the presence of water and OH units in their mineral structure. Vibrational spectroscopy enables new information on the structure of huanghoite to be assessed.