488 resultados para Droplet
Resumo:
In this paper, the main microphysical characteristics of clouds developing in polluted and clean conditions in the biomass-burning season of the Amazon region are examined, with special attention to the spectral dispersion of the cloud droplet size distribution and its potential impact on climate modeling applications. The dispersion effect has been shown to alter the climate cooling predicted by the so-called Twomey effect. In biomass-burning polluted conditions, high concentrations of low dispersed cloud droplets are found. Clean conditions revealed an opposite situation. The liquid water content (0.43 +/- 0.19 g m(-3)) is shown to be uncorrelated with the cloud drop number concentration, while the effective radius is found to be very much correlated with the relative dispersion of the size distribution (R(2) = 0.81). The results suggest that an increase in cloud condensation nuclei concentration from biomass-burning aerosols may lead to an additional effect caused by a decrease in relative dispersion. Since the dry season in the Amazonian region is vapor limiting, the dispersion effect of cloud droplet size distributions could be substantially larger than in other polluted regions.
Resumo:
The methanolic extract of the bark of the medicinal plant Qualea parviflora (Vochysiaceae) contains new nor-seco-triterpene and pentacyclic triterpenoids. They were separated in a preparative scale using droplet counter-current chromatography. The optimum solvent used was composed of a mixture of CHCl3/MeOH/H2O (43:37:20, v/v) in the descending mode and led to a successful separation of the new compound 28-nor-17, 22-seco-2 alpha, 3 beta, 19, 22, 23-pentahydroxy-Delta(12)-olecinane, besides the known triterpenoids bellericagenin B, bellericaside B and arjunglucoside I. Identification was performed by ESI-MS, H-1 NMR and C-13 NMR analyses.
Resumo:
A diversidade morfológica da superfície foliar existente entre as espécies de plantas e a presença de estruturas foliares como tricomas, estômatos, cutícula e ceras podem exercer grande influência na aderência e deposição das gotas de pulverização, assim como na absorção do herbicida. Desta forma, o objetivo do presente trabalho foi estudar, em quatro espécies de plantas daninhas aquáticas (Enhydra anagallis, Eichhornia crassipes, Heteranthera reniformis e Typha subulata), a área de molhamento de gotas de pulverização nas superfícies foliares adaxial e abaxial, bem como o pH foliar. O experimento foi realizado em Botucatu-SP. As plantas foram cultivadas em caixas d'água sob condições de campo, e quando atingiram seu pleno desenvolvimento (antes do florescimento), foram realizadas as avaliações de pH foliar e da área de molhamento de gotas de pulverização. As tensões superficiais das gotas aplicadas (0,5 mL), apresentadas pelas soluções de glyphosate aplicado isolado a 5,0% v v-1 (Rodeo 480 g L-1 e.a. produto comercial), glyphosate + Aterbane BR (5,0% + 0,5% v v-1), glyphosate + Silwet L-77 (5,0% + 0,05% v v-1), além das soluções com os adjuvantes isolados, Aterbane BR (0,5% v v-1) e Silwet L-77 (0,05% v v-1) foram respectivamente 72,1; 28,7; 23,3; 37,3 e 22,1 mN m-1. As médias obtidas de pH foliar variaram entre 5,50 e 7,50, destacando-se a espécie E. anagallis com valores de 6,68 e 7,02 para as faces adaxial e abaxial, respectivamente. Dentre as plantas daninhas aquáticas avaliadas T. subulata foi a espécie que apresentou as maiores médias de área de molhamento nas faces adaxial e abaxial da folha, proporcionada pelas as soluções de glyphosate + Aterbane BR, glyphosate + Silwet L-77 e Silwet L-77, com valores de 12,99-7,03; 20,04-17,95 e 31,81-25,91 mm², respectivamente.
Resumo:
This paper reports the separation of the indole alkaloids from the benzene extract of the root barks of Tabernaemontana hilariana (Apocynaceae). The crude alkaloid fraction was fractionated by droplet counter-current chromatography using a low polarity mixture (hexane:ethyl acetate:ethanol:water). Nine indole alkaloids (3-hydroxycoronaridine, coronaridine, voacangine, 3-(2-oxopropyl) coronaridine, voacangine hydroxyindolenine, ibogamine, voacangine pseudoindoxyl, coronaridine pseudoindoxyl and tabernanthine) were identified using thin laver chromatography gas chromatography coupled with mass spectrometry and nuclear magnetic resonance spectroscopy. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
We investigate a dilute mixture of bosons and spin-polarized fermions in one dimension. With an attractive Bose-Fermi scattering length the ground state is a self-bound droplet, i.e., a Bose-Fermi bright soliton where the Bose and Fermi clouds are superimposed. We find that the quantum fluctuations stabilize the Bose-Fermi soliton such that the one-dimensional bright soliton exists for any finite attractive Bose-Fermi scattering length. We study density profile and collective excitations of the atomic bright soliton showing that they depend on the bosonic regime involved: mean-field or Tonks-Girardeau.
Resumo:
The measurement of sulfur dioxide in air at the parts-per-billion level is described. The experimental arrangement consists of two optical fibers placed on opposite sides of a liquid droplet of malachite green solution. After light has been passed through the droplet, the transmitted light is measured by a referenced photodetection arrangement. The light used in this absorption process is from a monochromatic source (lambda(max) 625 nm). This arrangement permits the variation of color in the droplet to be measured. The sulfur dioxide in the sample is collected by the droplet; it reacts with malachite green resulting in a colorless dye. The decoloration of the solution is proportional to the concentration of sulfur dioxide sampled. The signal depends on the sample flow rate. The present technique is simple, inexpensive, and permits a fast and near real time measurement while consuming very little reagent, (C) 1999 Academic Press.
Resumo:
The measurement of nitrogen dioxide at the parts-perbillion level is described. The experimental arrangement consists of two optical fibers placed on opposite sides of and in contact with a liquid film (14-57 μL in volume) supported on a U-shaped wire guide and two tubular conduits (one of which constitutes the means for the delivery of the liquid), light from a green (555 nm) light-emitting diode enters the liquid film, composed of Griess-Saltzman reagent. The transmitted light is measured by a referenced photodetection arrangement. Sample gas flows past the droplet at a low flow rate (typically 0.10-0.25 L/min). The response is proportional to the sampling period and the analyte concentration. The limit of detection for this nonoptimized arrangement is estimated to be <10 ppb by volume for a 5 min sample. Some unusual characteristics are observed. The initial absorbance, when most of the analyte/reaction product is still near the surface, is higher than that when the content of the droplet is fully mixed. The signal depends on the sample flow rate in a nonmonotonic fashion, first increasing and then decreasing with increasing sampling rate; the specific chemistry involved in the collection and determination of NO2 may be responsible.
Resumo:
A general procedure was developed for the simultaneous separation of flavonoids and naphthopyrones from the polar extracts of the capitula from Brazilian everlasting plants is described. The ethanolic extracts of several species from the Paepalanthus genus (Eriocaulaceae) were fractionated by droplet countercurrent chromatography followed by column chromatography on pvp and sephadex LH-20. The isolated compounds were identified by spectrometric analysis and comparison with literature data. This approach led to the isolation of 9-O-β-D-glucopyranosylpaepalantine (1), 9-O-β-D-glucopyranosyl (1→6)allopyranosylpaepalantine (2), along with the flavonoids 6-methoxykaempferol (3), 3-O-β-D-glucopyranosyl-6-methoxykaempferol (4), patuletin (5), 3-Oβ-D-rutinosylpatuletin (6), 7-O-β-D-glucopyranosylquercetagetin (7), 5,7,4'-trihydroxy-6,3'-dimethoxyflavone (8) and 5,7,4'-trihydroxy-6,3'-dimethoxyflavonol (9).
Resumo:
The quark-meson-coupling model is used to study droplet formation from the liquid-gas phase transition in cold asymmetric nuclear matter. The critical density and proton fraction for the phase transition are determined in the mean field approximation. Droplet properties are calculated in the Thomas-Fermi approximation. The electromagnetic field is explicitly included and its effects on droplet properties are studied. The results are compared with the ones obtained with the NL1 parametrization of the non-linear Walecka model. © 2000 Elsevier Science B.V.
Resumo:
A simple and sensitive method based on a liquid droplet is described for the measurement of atmospheric ozone. A 30 μL drop of indigo blue solution is suspended in a flowing-air sampling stream. The ozone collected reacts with the indigo solution resulting in its decolorization. The colorimetric sensor is composed of two optical fibers and the source of monochromatic light was a red LED (625 nm). The calibration curve was constructed with ozone standard concentrations ranging from 37 - 123 ppbv. The detection limit achieved was 7.3 ppbv. The method considered here showed itself to be easy to apply with a fast response and a total analysis time of only 5 minutes.
Resumo:
We study the statics and dynamics of a dipolar Bose-Einstein condensate (BEC) droplet bound by interspecies contact interaction in a trapped nondipolar BEC. Our findings are demonstrated in terms of stability plots of a dipolar 164Dy droplet bound in a trapped nondipolar 87Rb BEC with a variable number of 164Dy atoms and interspecies scattering length. A trapped nondipolar BEC of a fixed number of atoms can bind only a dipolar droplet containing fewer atoms than a critical number for the interspecies scattering length between two critical values. The shape and size (statics) as well as the small breathing oscillation (dynamics) of the dipolar BEC droplet are studied using numerical and variational solutions of a mean-field model. We also suggest an experimental procedure for achieving such a 164Dy droplet by relaxing the trap on the 164Dy BEC in a trapped binary 87Rb-164Dy mixture. © 2013 American Physical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The particle sizes, morphologies, and structures are presented for succinic acid particles formed from the evaporation of uniform droplets created with a vibrating orifice aerosol generator. Particle sizes are monodisperse, and solvent choice is found to be the dominant factor in determining the final morphology and structure. The external particle morphologies range from round to cap shaped, while the surface roughness ranges from fairly smooth to extremely rough and pitted. Internally, the particles have significant void space and noticeable crystals. X-ray diffraction confirms that the particles are crystalline. Thus, the morphologies of the particles take on a crystal filled structure that is unique in comparison to previous particles formed through droplet evaporation. The structure of the particles contains β succinic acid; however, the particles formed from water also contain α succinic acid. α Succinic acid has not previously been able to be formed from solution at near atmospheric conditions. The unique morphologies and ability to identify unexpected polymorphs provide for a potential tool to not only enhance particle engineering but also to identify metastable polymorphs.
Resumo:
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.