896 resultados para Driver-Vehicle System Modeling.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
It has been well documented that traffic accidents that can be avoided occur when the motorists miss or ignore traffic signs. With the attention of drivers getting diverted due to distractions like cell phone conversations, missing traffic signs has become more prevalent. Also, poor weather and other unfriendly driving conditions sometimes makes the motorists not to be alert all the time and see every traffic sign on the road. Besides, most cars do not have any form of traffic assistance. Because of heavy traffic and proliferation of traffic signs on the roads, there is a need for a system that assists the driver not to miss a traffic sign to reduce the probability of an accident. Since visual information is critical for driving, processed video signals from cameras have been chosen to assist drivers. These inexpensive cameras can be easily mounted on the automobile. The objective of the present investigation and the traffic system development is to recognize the traffic signs electronically and alert drivers. For the case study and the system development, five important and critical traffic signs have been selected. They are: STOP, NO ENTER, NO RIGHT TURN, NO LEFT TURN, and YIELD. The system was evaluated processing still pictures taken from the public roads, and the recognition results were presented in an analysis table to indicate the correct identifications and the false ones. The system reached the acceptable recognition rate of 80% for all five traffic signs. The processing rate was about three seconds. The capabilities of MATLAB, VLSI design platforms and coding have been used to generate a visual warning to complement the visual driver support system with a Field Programmable Gate Array (FPGA) on a XUP Virtex-II Pro Development System.
Resumo:
A hybrid electric vehicle is a fast-growing concept in the field of vehicle industry. Nowadays two global problems make manufactures to develop such systems. These problems are: the growing cost of a fuel and environmental pollution. Also development of controlled electric drive with high control accuracy and reliability allows improving of vehicle drive characteristics. The objective of this Diploma Thesis is to investigate the possibilities of electrical drive application for new principle of parallel hybrid vehicle system. Electric motor calculations, selection of most suitable control system and other calculations are needed. This work is not final work for such topic. Further investigation with more precise calculations, modeling, measurements and cost calculations are needed to answer the question if such system is efficient.
Resumo:
Nowadays, drives that use a combination of induction motors and frequency inverters are very common, a fact due to the financial practicality and viability in purchasing and operating that system. This system modeling and simulation becomes important when it wants to evaluate the performance, to calculate and correct parameters, and it has a fundamental role in functionality and viability analysis for application of new configurations and technologies. This work is about to elaborate a simple induction motor model based in the torque versus speed characteristic, using the linearization method for application in a specific operation range to be controlled by a frequency inverter. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
The work described in this Master’s Degree thesis was born after the collaboration with the company Maserati S.p.a, an Italian luxury car maker with its headquarters located in Modena, in the heart of the Italian Motor Valley, where I worked as a stagiaire in the Virtual Engineering team between September 2021 and February 2022. This work proposes the validation using real-world ECUs of a Driver Drowsiness Detection (DDD) system prototype based on different detection methods with the goal to overcome input signal losses and system failures. Detection methods of different categories have been chosen from literature and merged with the goal of utilizing the benefits of each of them, overcoming their limitations and limiting as much as possible their degree of intrusiveness to prevent any kind of driving distraction: an image processing-based technique for human physical signals detection as well as methods based on driver-vehicle interaction are used. A Driver-In-the-Loop simulator is used to gather real data on which a Machine Learning-based algorithm will be trained and validated. These data come from the tests that the company conducts in its daily activities so confidential information about the simulator and the drivers will be omitted. Although the impact of the proposed system is not remarkable and there is still work to do in all its elements, the results indicate the main advantages of the system in terms of robustness against subsystem failures and signal losses.
Resumo:
The design process of any electric vehicle system has to be oriented towards the best energy efficiency, together with the constraint of maintaining comfort in the vehicle cabin. Main aim of this study is to research the best thermal management solution in terms of HVAC efficiency without compromising occupant’s comfort and internal air quality. An Arduino controlled Low Cost System of Sensors was developed and compared against reference instrumentation (average R-squared of 0.92) and then used to characterise the vehicle cabin in real parking and driving conditions trials. Data on the energy use of the HVAC was retrieved from the car On-Board Diagnostic port. Energy savings using recirculation can reach 30 %, but pollutants concentration in the cabin builds up in this operating mode. Moreover, the temperature profile appeared strongly nonuniform with air temperature differences up to 10° C. Optimisation methods often require a high number of runs to find the optimal configuration of the system. Fast models proved to be beneficial for these task, while CFD-1D model are usually slower despite the higher level of detail provided. In this work, the collected dataset was used to train a fast ML model of both cabin and HVAC using linear regression. Average scaled RMSE over all trials is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a laptop computer. Finally, a reinforcement learning environment was built in OpenAI and Stable-Baselines3 using the built-in Proximal Policy Optimisation algorithm to update the policy and seek for the best compromise between comfort, air quality and energy reward terms. The learning curves show an oscillating behaviour overall, with only 2 experiments behaving as expected even if too slow. This result leaves large room for improvement, ranging from the reward function engineering to the expansion of the ML model.
Resumo:
Commercially available instruments for road-side data collection take highly limited measurements, require extensive manual input, or are too expensive for widespread use. However, inexpensive computer vision techniques for digital video analysis can be applied to automate the monitoring of driver, vehicle, and pedestrian behaviors. These techniques can measure safety-related variables that cannot be easily measured using existing sensors. The use of these techniques will lead to an improved understanding of the decisions made by drivers at intersections. These automated techniques allow the collection of large amounts of safety-related data in a relatively short amount of time. There is a need to develop an easily deployable system to utilize these new techniques. This project implemented and tested a digital video analysis system for use at intersections. A prototype video recording system was developed for field deployment. A computer interface was implemented and served to simplify and automate the data analysis and the data review process. Driver behavior was measured at urban and rural non-signalized intersections. Recorded digital video was analyzed and used to test the system.
Resumo:
This report summarizes the work done for the Vehicle Powertrain Modeling and Design Problem Proposal portion of the EcoCAR3 proposal as specified in the Request for Proposal from Argonne National Laboratory. The results of the modeling exercises presented in the proposal showed that: An average conventional vehicle powered by a combustion engine could not meet the energy consumption target when the engine was sized to meet the acceleration target, due the relatively low thermal efficiency of the spark ignition engine. A battery electric vehicle could not meet the required range target of 320 km while keeping the vehicle weight below the gross vehicle weight rating of 2000 kg. This was due to the low energy density of the batteries which necessitated a large, and heavy, battery pack to provide enough energy to meet the range target. A series hybrid electric vehicle has the potential to meet the acceleration and energy consumption parameters when the components are optimally sized. A parallel hybrid electric vehicle has less energy conversion losses than a series hybrid electric vehicle which results in greater overall efficiency, lower energy consumption, and less emissions. For EcoCAR3, Michigan Tech proposes to develop a plug-in parallel hybrid vehicle (PPHEV) powered by a small Diesel engine operating on B20 Bio-Diesel fuel. This architecture was chosen over other options due to its compact design, lower cost, and its ability to provide performance levels and energy efficiency that meet or exceed the design targets. While this powertrain configuration requires a more complex control system and strategy than others, the student engineering team at Michigan Tech has significant recent experience with this architecture and has confidence that it will perform well in the events planned for the EcoCAR3 competition.
Resumo:
Decreasing the accidents on highway and urban environments is the main motivation for the research and developing of driving assistance systems, also called ADAS (Advanced Driver Assistance Systems). In recent years, there are many applications of these systems in commercial vehicles: ABS systems, Cruise Control (CC), parking assistance and warning systems (including GPS), among others. However, the implementation of driving assistance systems on the steering wheel is more limited, because of their complexity and sensitivity. This paper is focused in the development, test and implementation of a driver assistance system for controlling the steering wheel in curve zones. This system is divided in two levels: an inner control loop which permits to execute the position and speed target, softening the action over the steering wheel, and a second control outer loop (controlling for fuzzy logic) that sends the reference to the inner loop according the environment and vehicle conditions. The tests have been done in different curves and speeds. The system has been proved in a commercial vehicle with satisfactory results.