970 resultados para Disorder Localization Fermionic Chain Anderson Aubry-Andre Mobility-Edges


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electric field activated charge transport is studied in the metal/polymer/metal device structure of electropolymerized polypyrrole down to 10 K with varying carrier density and disorder. Disorder induced nonlinear behaviour is observed in polypyrrole devices grown at room temperature which is correlated to delocalization of states. The slope parameter of currentvoltage characteristics (in log-log scale) increases as the temperature decreases, which indicates the onset of stronger field dependence. The field dependence of mobility becomes dominant as the carrier density decreases. The sharp dip in differential conductance indicates the localization of carriers at low temperatures which reduces the effective number of carriers involved in the transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Disorder and interactions both play crucial roles in quantum transport. Decades ago, Mott showed that electron-electron interactions can lead to insulating behavior in materials that conventional band theory predicts to be conducting. Soon thereafter, Anderson demonstrated that disorder can localize a quantum particle through the wave interference phenomenon of Anderson localization. Although interactions and disorder both separately induce insulating behavior, the interplay of these two ingredients is subtle and often leads to surprising behavior at the periphery of our current understanding. Modern experiments probe these phenomena in a variety of contexts (e.g. disordered superconductors, cold atoms, photonic waveguides, etc.); thus, theoretical and numerical advancements are urgently needed. In this thesis, we report progress on understanding two contexts in which the interplay of disorder and interactions is especially important.

The first is the so-called “dirty” or random boson problem. In the past decade, a strong-disorder renormalization group (SDRG) treatment by Altman, Kafri, Polkovnikov, and Refael has raised the possibility of a new unstable fixed point governing the superfluid-insulator transition in the one-dimensional dirty boson problem. This new critical behavior may take over from the weak-disorder criticality of Giamarchi and Schulz when disorder is sufficiently strong. We analytically determine the scaling of the superfluid susceptibility at the strong-disorder fixed point and connect our analysis to recent Monte Carlo simulations by Hrahsheh and Vojta. We then shift our attention to two dimensions and use a numerical implementation of the SDRG to locate the fixed point governing the superfluid-insulator transition there. We identify several universal properties of this transition, which are fully independent of the microscopic features of the disorder.

The second focus of this thesis is the interplay of localization and interactions in systems with high energy density (i.e., far from the usual low energy limit of condensed matter physics). Recent theoretical and numerical work indicates that localization can survive in this regime, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in isolated quantum systems: it separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting (“ergodic”) phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present evidence that many-body localization also occurs in quasiperiodic systems that lack true disorder.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The photon localization in disordered two-dimensional photonic crystal is studied theoretically. It is found that the mean transmission coefficient in the photonic band decreases exponentially as the disorder degree increases, reflecting the occurrence of Anderson localization. The strength of photon localization can be controlled by tuning the disorder degree in the photonic crystal. We think the variation regular of the transmission coefficient in our disordered system is equivalent to that of the scaling theory of localization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether (PEGME) with different molecular weights as side chains, three comb-like polymers and their Li salt complexes were synthesized. The dynamic mechanical properties and conductivities were investigated. Results showed that the polymer electrolytes possess two glass transitions: alpha -transition and beta -transition, and the temperature dependence of the ionic conductivity shows WLF (Williams-Landel-Ferry) behavior. Based on the time-temperature equivalence principle, a master curve was constructed by selecting T-beta as reference temperature. The values of the WLF parameters (C-1 and C-2) were obtained and were found to be almost independent of the length of the PEGME side chain and the content of Li salt. By reference to T-0 = 50 degreesC. the relation between log tau (c) and c was found to be linear. The master curves are displaced progressively to higher frequencies as the molecular weight of the side chain is increased. The relation between log tau (n) and the molecular weight of the side chain is also linear. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The radiation-induced chain-scission and racemization of isotactic poly(methylmethacrylate)(iso-PMMA) in amorphous and semi-crystalline state as well as in solution have been studied with nuclear magnetic resonance and molar mass deter-mination. It is shown that the chain-scission is dominant for iso-PMMA in dilute solution while the racemization reaction is not favorable in this case. On the contrary, the racemization is favorable when iso-PMMA was irradiated in its crystalline state while chain-scission is not. Such experimental results could be well explained by the mobility of molecules and "cage effect". The hypothesis, we proposed previously that the chain-scission, racemization and recombination are in competition and the final result depends on the state of molecular motion at which iso-PMMA was irradiated, has been verified verified once again.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ground-state entanglement entropy between block of sites in the random Ising chain is studied by means of the Von Neumann entropy. We show that in presence of strong correlations between the disordered couplings and local magnetic fields the entanglement increases and becomes larger than in the ordered case. The different behavior with respect to the uncorrelated disordered model is due to the drastic change of the ground state properties. The same result holds also for the random three-state quantum Potts model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mobility of a one-dimensional damped Frenkel-Kontorova chain under a de driving force is studied numerically and analytically For the commensurate case, the particles in the chain me synchronized st high driving force. For the incommensurate chain, a single mode solution dominates st high mobility regime. We are able to calculate the mobilities for both the cases analytically, and a good agreement with numerical results is found. The mobility hysteresis for the incommensurate chain is explained by the existence of two branches of physical solutions, and transitions occur when one of them breaks up.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a scattering problem for a nonlinear disordered lattice layer governed by the discrete nonlinear Schrodinger equation. The linear state with exponentially small transparency, due to the Anderson localization, is followed for an increasing nonlinearity, until it is destroyed via a bifurcation. The critical nonlinearity is shown to decay with the lattice length as a power law. We demonstrate that in the chaotic regimes beyond the bifurcation the field is delocalized and this leads to a drastic increase of transparency. Copyright (C) EPLA, 2008

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we present a detailed study on the optical properties of two GaAs/Al(0.35)Ga(0.65)As coupled double quantum wells (CDQWs) with inter-well barriers of different thicknesses, by using photoluminescence (PL) spectroscopy. The two CDQWs were grown in a single sample, assuring very similar experimental conditions for measurements of both. The PL spectrum of each CDQW exhibits two recombination channels which can be accurately identified as the excitonic e(1)-hh(1) transitions originated from CDQWs of different effective dimensions. The PL spectra characteristics and the behavior of the emissions as a function of temperature and excitation power are interpreted in the scenario of the bimodal interface roughness model, taking into account the exciton migration between the two regions considered in this model and the difference in the potential fluctuation levels between those two regions. The details of the PL spectra behavior as a function of excitation power are explained in terms of the competition between the band gap renormalization (BGR) and the potential fluctuation effects. The results obtained for the two CDQWs, which have different degrees of potential fluctuation, are also compared and discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics. Copyright (C) EPLA, 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SANTANA, André M.; SOUZA, Anderson A. S.; BRITTO, Ricardo S.; ALSINA, Pablo J.; MEDEIROS, Adelardo A. D. Localization of a mobile robot based on odometry and natural landmarks using extended Kalman Filter. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 5., 2008, Funchal, Portugal. Proceedings... Funchal, Portugal: ICINCO, 2008.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper studies energy localization conditions in lattices of the type proposed by Peyrard and Bishop. Homogeneous and inhomogeneous lattices are analyzed and the role of interfaces in the latter is emphasized. Simulations allowed us to identify critical energy values for the existence of localization. After a certain energy value, it is possible to observe the loss of energy localization along the chain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)