977 resultados para Discrete polynomial theory
Resumo:
I agree with Costanza and Finkelstein (2015) that it is futile to further invest in the study of generational differences in the work context due to a lack of appropriate theory and methods. The key problem with the generations concept is that splitting continuous variables such as age or time into a few discrete units involves arbitrary cutoffs and atheoretical groupings of individuals (e.g., stating that all people born between the early 1960s and early 1980s belong to Generation X). As noted by methodologists, this procedure leads to a loss of information about individuals and reduced statistical power (MacCallum, Zhang, Preacher, & Rucker, 2002). Due to these conceptual and methodological limitations, I regard it as very difficult if not impossible to develop a “comprehensive theory of generations” (Costanza & Finkelstein, p. 20) and to rigorously examine generational differences at work in empirical studies.
Resumo:
This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.
Resumo:
This thesis studies homogeneous classes of complete metric spaces. Over the past few decades model theory has been extended to cover a variety of nonelementary frameworks. Shelah introduced the abstact elementary classes (AEC) in the 1980s as a common framework for the study of nonelementary classes. Another direction of extension has been the development of model theory for metric structures. This thesis takes a step in the direction of combining these two by introducing an AEC-like setting for studying metric structures. To find balance between generality and the possibility to develop stability theoretic tools, we work in a homogeneous context, thus extending the usual compact approach. The homogeneous context enables the application of stability theoretic tools developed in discrete homogeneous model theory. Using these we prove categoricity transfer theorems for homogeneous metric structures with respect to isometric isomorphisms. We also show how generalized isomorphisms can be added to the class, giving a model theoretic approach to, e.g., Banach space isomorphisms or operator approximations. The novelty is the built-in treatment of these generalized isomorphisms making, e.g., stability up to perturbation the natural stability notion. With respect to these generalized isomorphisms we develop a notion of independence. It behaves well already for structures which are omega-stable up to perturbation and coincides with the one from classical homogeneous model theory over saturated enough models. We also introduce a notion of isolation and prove dominance for it.
Resumo:
We consider the problem of transmission of correlated discrete alphabet sources over a Gaussian Multiple Access Channel (GMAC). A distributed bit-to-Gaussian mapping is proposed which yields jointly Gaussian codewords. This can guarantee lossless transmission or lossy transmission with given distortions, if possible. The technique can be extended to the system with side information at the encoders and decoder.
Resumo:
This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.
Resumo:
Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee uniform asymptotic stability of both the optimal infinite-horizon and movinghorizon feedback systems. The infinite-horizon cost associated with the moving-horizon feedback law approaches the optimal infinite-horizon cost as the moving horizon is extended.
Resumo:
The finite resolution of joint drives or sensors imparts a discrete nature to the joints of a manipulator. Because of this an arbitrary point in the workspace cannot be reached without error even in ideal mechanical environment. This paper investigates the effect of this discrete nature of the joints on the accuracy of performance of a manipulator and develops a method to select the joint states to reach a point with least error. It is shown that the configuration leading to least error cannot, in general, be found from configuration space, especially when there is large variation in the link lengths or joint resolutions or both. The anomaly becomes severe when the gross motion of the end-effector approaches the local resolution of the workspace. The paper also shows how to distinguish two workspaces which may be identical so far as the boundary points are concerned, taking the joint resolutions into account. Finally, the concepts have been extended to define continuous space global and local performance indices for general multi degree of freedom manipulators.
Resumo:
We consider Gaussian multiple-input multiple-output (MIMO) channels with discrete input alphabets. We propose a non-diagonal precoder based on X-Codes in to increase the mutual information. The MIMO channel is transformed into a set of parallel subchannels using Singular Value Decomposition (SVD) and X-codes are then used to pair the subchannels. X-Codes are fully characterized by the pairings and the 2 × 2 real rotation matrices for each pair (parameterized with a single angle). This precoding structure enables to express the total mutual information as a sum of the mutual information of all the pairs. The problem of finding the optimal precoder with the above structure, which maximizes the total mutual information, is equivalent to i) optimizing the rotation angle and the power allocation within each pair and ii) finding the optimal pairing and power allocation among the pairs. It is shown that the mutual information achieved with the proposed pairing scheme is very close to that achieved with the optimal precoder by Cruz et al., and significantly better than mercury/waterfilling strategy by Lozano et al.. Our approach greatly simplifies both the precoder optimization and the detection complexity, making it suitable for practical applications.
Resumo:
We consider Gaussian multiple-input multiple-output (MIMO) channels with discrete input alphabets. We propose a non-diagonal precoder based on the X-Codes in 1] to increase the mutual information. The MIMO channel is transformed into a set of parallel subchannels using singular value decomposition (SVD) and X-Codes are then used to pair the subchannels. X-Codes are fully characterized by the pairings and a 2 x 2 real rotation matrix for each pair (parameterized with a single angle). This precoding structure enables us to express the total mutual information as a sum of the mutual information of all the pairs. The problem of finding the optimal precoder with the above structure, which maximizes the total mutual information, is solved by: i) optimizing the rotation angle and the power allocation within each pair and ii) finding the optimal pairing and power allocation among the pairs. It is shown that the mutual information achieved with the proposed pairing scheme is very close to that achieved with the optimal precoder by Cruz et al., and is significantly better than Mercury/waterfilling strategy by Lozano et al. Our approach greatly simplifies both the precoder optimization and the detection complexity, making it suitable for practical applications.
Resumo:
The problem of electromagnetic wave propagation in a rectangular waveguide containing a thick iris is considered for its complete solution by reducing it to two suitable integral equations, one of which is of the first kind and the other is of the second kind. These integral equations are solved approximately, by using truncated Fourier series for the unknown functions. The reflection coefficient is computed numerically from the two integral equation approaches, and almost the same numerical results are obtained. This is also depicted graphically against the wave number and compared with thin iris results, which are computed by using complementary formulations coupled with Galerkin approximations. While the reflection coefficient for a thin iris steadily increases with the wave number, for a thick iris it fluctuates and zero reflection occurs. The number of zeros of the reflection coefficient for a thick iris increases with the thickness. Thus a thick iris becomes completely transparent for some discrete wave numbers. This phenomenon may be significant in the modelling of rectangular waveguides.
Resumo:
The specific objective of this paper is to develop direct digital control strategies for an ammonia reactor using quadratic regulator theory and compare the performance of the resultant control system with that under conventional PID regulators. The controller design studies are based on a ninth order state-space model obtained from the exact nonlinear distributed model using linearization and lumping approximations. The evaluation of these controllers with reference to their disturbance rejection capabilities and transient response characteristics, is carried out using hybrid computer simulation.
Resumo:
In this article we review classical and modern Galois theory with historical evolution and prove a criterion of Galois for solvability of an irreducible separable polynomial of prime degree over an arbitrary field k and give many illustrative examples.
Resumo:
Let be a smooth real surface in and let be a point at which the tangent plane is a complex line. How does one determine whether or not is locally polynomially convex at such a p-i.e. at a CR singularity? Even when the order of contact of with at p equals 2, no clean characterisation exists; difficulties are posed by parabolic points. Hence, we study non-parabolic CR singularities. We show that the presence or absence of Bishop discs around certain non-parabolic CR singularities is completely determined by a Maslov-type index. This result subsumes all known facts about Bishop discs around order-two, non-parabolic CR singularities. Sufficient conditions for Bishop discs have earlier been investigated at CR singularities having high order of contact with . These results relied upon a subharmonicity condition, which fails in many simple cases. Hence, we look beyond potential theory and refine certain ideas going back to Bishop.