985 resultados para Dimension Theory
Resumo:
The dissociation process of gas hydrate was regarded as a gas-solid reaction without solid production layer when the temperature was above the zero centigrade. Based on the shrinking core model and the fractal theory, a fractional dimension dynamical model for gas hydrate dissociation in porous sediment was established. The new approach of evaluating the fractal dimension of the porous media was also presented. The fractional dimension dynamical model for gas hydrate dissociation was examined with the previous experimental data of methane hydrate and carbon dioxide hydrate dissociations, respectively. The calculated results indicate that the fractal dimensions of porous media acquired with this method agree well with the previous study. With the absolute average deviation (AAD) below 10%, the present model provided satisfactory predictions for the dissociation process of methane hydrate and carbon dioxide hydrate.
Resumo:
The analytical expressions of quasi-first and second order homogeneous catalytic reactions with different diffusion coefficients at ultramicrodisk electrodes under steady state conditions are obtained by using the reaction layer concept. The method of treatment is simple and its physical meaning is clear. The relationship between the diffusion layer, reaction layer, the electrode dimension and the kinetic rate constant at an ultramicroelectrode is discussed and the factor effect on the reaction order is described. The order of a catalytic reaction at an ultramicroelectrode under steady state conditions is related not only to C(Z)*/C(O)* but also to the kinetic rate constant and the dimension of the ultramicroelectrode; thus the order of reaction can be controlled by the dimension of the ultramicroelectrode. The steady state voltammetry of the ultramicroelectrode is one of the most simple methods available to study the kinetics of fast catalytic reactions.
Resumo:
We study the problem of consistent interactions for spin-3 gauge fields in flat spacetime of arbitrary dimension 3$">n>3. Under the sole assumptions of Poincaré and parity invariance, local and perturbative deformation of the free theory, we determine all nontrivial consistent deformations of the abelian gauge algebra and classify the corresponding deformations of the quadratic action, at first order in the deformation parameter. We prove that all such vertices are cubic, contain a total of either three or five derivatives and are uniquely characterized by a rank-three constant tensor (an internal algebra structure constant). The covariant cubic vertex containing three derivatives is the vertex discovered by Berends, Burgers and van Dam, which however leads to inconsistencies at second order in the deformation parameter. In dimensions 4$">n>4 and for a completely antisymmetric structure constant tensor, another covariant cubic vertex exists, which contains five derivatives and passes the consistency test where the previous vertex failed. © SISSA 2006.
Resumo:
The consideration of the limit theory in which T is fixed and N is allowed to go to infinity improves the finite-sample properties of the tests and avoids the imposition of the relative rates at which T and N go to infinity.
Resumo:
Let X be a connected, noetherian scheme and A{script} be a sheaf of Azumaya algebras on X, which is a locally free O{script}-module of rank a. We show that the kernel and cokernel of K(X) ? K(A{script}) are torsion groups with exponent a for some m and any i = 0, when X is regular or X is of dimension d with an ample sheaf (in this case m = d + 1). As a consequence, K(X, Z/m) ? K(A{script}, Z/m), for any m relatively prime to a. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
This paper presents a 3D simulation system which is employed in order to predict cutting forces and tool deflection during end-milling operation. In order to verify the accuracy of 3D simulation, results (cutting forces and tool deflection) were compared with those based on the theoretical relationships, in terms of agreement with experiments. The results obtained indicate that the simulation is capable of predicting the cutting forces and tool deflection.
Resumo:
McCausland (2004a) describes a new theory of random consumer demand. Theoretically consistent random demand can be represented by a \"regular\" \"L-utility\" function on the consumption set X. The present paper is about Bayesian inference for regular L-utility functions. We express prior and posterior uncertainty in terms of distributions over the indefinite-dimensional parameter set of a flexible functional form. We propose a class of proper priors on the parameter set. The priors are flexible, in the sense that they put positive probability in the neighborhood of any L-utility function that is regular on a large subset bar(X) of X; and regular, in the sense that they assign zero probability to the set of L-utility functions that are irregular on bar(X). We propose methods of Bayesian inference for an environment with indivisible goods, leaving the more difficult case of indefinitely divisible goods for another paper. We analyse individual choice data from a consumer experiment described in Harbaugh et al. (2001).
Resumo:
Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$.
Resumo:
We show that optimizing a quantum gate for an open quantum system requires the time evolution of only three states irrespective of the dimension of Hilbert space. This represents a significant reduction in computational resources compared to the complete basis of Liouville space that is commonly believed necessary for this task. The reduction is based on two observations: the target is not a general dynamical map but a unitary operation; and the time evolution of two properly chosen states is sufficient to distinguish any two unitaries. We illustrate gate optimization employing a reduced set of states for a controlled phasegate with trapped atoms as qubit carriers and a iSWAP gate with superconducting qubits.
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels
Resumo:
Military doctrine is one of the conceptual components of war. Its raison d’être is that of a force multiplier. It enables a smaller force to take on and defeat a larger force in battle. This article’s departure point is the aphorism of Sir Julian Corbett, who described doctrine as ‘the soul of warfare’. The second dimension to creating a force multiplier effect is forging doctrine with an appropriate command philosophy. The challenge for commanders is how, in unique circumstances, to formulate, disseminate and apply an appropriate doctrine and combine it with a relevant command philosophy. This can only be achieved by policy-makers and senior commanders successfully answering the Clausewitzian question: what kind of conflict are they involved in? Once an answer has been provided, a synthesis of these two factors can be developed and applied. Doctrine has implications for all three levels of war. Tactically, doctrine does two things: first, it helps to create a tempo of operations; second, it develops a transitory quality that will produce operational effect, and ultimately facilitate the pursuit of strategic objectives. Its function is to provide both training and instruction. At the operational level instruction and understanding are critical functions. Third, at the strategic level it provides understanding and direction. Using John Gooch’s six components of doctrine, it will be argued that there is a lacunae in the theory of doctrine as these components can manifest themselves in very different ways at the three levels of war. They can in turn affect the transitory quality of tactical operations. Doctrine is pivotal to success in war. Without doctrine and the appropriate command philosophy military operations cannot be successfully concluded against an active and determined foe.
Resumo:
Vekua operators map harmonic functions defined on domain in \mathbb R2R2 to solutions of elliptic partial differential equations on the same domain and vice versa. In this paper, following the original work of I. Vekua (Ilja Vekua (1907–1977), Soviet-Georgian mathematician), we define Vekua operators in the case of the Helmholtz equation in a completely explicit fashion, in any space dimension N ≥ 2. We prove (i) that they actually transform harmonic functions and Helmholtz solutions into each other; (ii) that they are inverse to each other; and (iii) that they are continuous in any Sobolev norm in star-shaped Lipschitz domains. Finally, we define and compute the generalized harmonic polynomials as the Vekua transforms of harmonic polynomials. These results are instrumental in proving approximation estimates for solutions of the Helmholtz equation in spaces of circular, spherical, and plane waves.
Resumo:
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.