934 resultados para Digestive enzyme
Resumo:
Background & Aims: There is a significant relationship between inheritance of high transforming growth factor (TGF)-beta1 and angiotensinogen-producing genotypes and the development of progressive hepatic fibrosis in patients with chronic hepatitis C. In cardiac and renal fibrosis, TGF-beta1 production may be enhanced by angiotensin II, the principal effector molecule of the renin-angiotensin system. The aim of the present study was to determine the effects of the angiotensin converting enzyme inhibitor, captopril, on the progression of hepatic fibrosis in the rat bile duct ligation model. Methods: Rats were treated with captopril (100 mg kg(-1) day(-1)) commencing 1 or 2 weeks after bile duct ligation. Animals with bile duct ligation only and sham-operated animals sewed as controls. Four weeks after bile duct ligation, indices of fibrosis were assessed. Results: Cap topril treatment significantly reduced hepatic hydroxyproline levels, mean fibrosis score, steady state messenger RNA levels of TGF-beta1 and procollagen alpha1(I), and matrix metalloproteinase 2 and 9 activity. Conclusions: Captopril significantly attenuates the progression of hepatic fibrosis in the vat bile duct ligation model, and its effectiveness should be studied in human chronic liver diseases associated with progressive fibrosis.
Resumo:
The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis) was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis) was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.
Studies on the digestive enzymes of the cultivable grey mullet liza parsia (hamilton buchanan, 1822)
Resumo:
Culturing of fish in captivity demands a detailed knowledge on well balanced diet and adequate feeding. Formulation and production of nutritionally balanced diets for fish require research, quality control and biological evaluation. It is often assuemed that what is ingested is also digested, but this is not always be the case. Digestion depends upon both the physical state of the food and the kind and quantity of enzymes in the digestive tract. The ability of fish to digest a particular component of diet can be ascertained by investigating the complement of digestive enzymes present along the digestive tract. Investigations on the basic digestive physiology will not only enhance our present knowledge on nutrition and feed development, but will also contribute in understanding the digestive functions of lower vertebrates. It is against this background that the present topic of investigation "Studies on the digestive enzymes of the cultivable grey mullet Liza parsia Hamilton Buchanan, l822" has been selected. The thesis is arranged and presented in eight chapters.
Resumo:
Musca domestica larvae display in anterior and middle midgut contents, a proteolytic activity with pH optimum of 3.0-3.5 and kinetic properties like cathepsin D. Three cDNAs coding for preprocathepsin D-like proteinases (ppCAD 1, ppCAD 2, ppCAD 3) were cloned from a M. domestica midgut cDNA library. The coded protein sequences included the signal peptide, propeptide and mature enzyme that has all conserved catalytic and substrate binding residues found in bovine lysosomal cathepsin D. Nevertheless, ppCAD 2 and ppCAD 3 lack the characteristic proline loop and glycosylation sites. A comparison among the sequences of cathepsin D-like enzymes from some vertebrates and those found in M. domestica and in the genomes of Aedes aegypti, Drosophila melanogaster, Tribolium castaneum, and Bombyx mori showed that only flies have enzymes lacking the proline loop (as defined by the motif: DxPxPx(G/A)P), thus resembling vertebrate pepsin. ppCAD 3 should correspond to the digestive cathepsin D-like proteinase (CAD) found in enzyme assays because: (1) it seems to be the most expressed CAD, based on the frequency of ESTs found. (2) The mRNA for CAD 3 is expressed only in the anterior and proximal middle midgut. (3) Recombinant procathepsin D-like proteinase (pCAD 3), after auto-activation has a pH optimum of 2.5-3.0 that is close to the luminal pH of M. domestica midgut. (4) Immunoblots of proteins from different tissues revealed with anti-pCAD 3 serum were positive only in samples of anterior and middle midgut tissue and contents. (5) CAD 3 is localized with immunogold inside secretory vesicles and around microvilli in anterior and middle midguit cells. The data support the view that on adapting to deal with a bacteria-rich food in an acid midgut region, M. domestica digestive CAD resulted from the same archetypical gene as the intracellular cathepsin D, paralleling what happened with vertebrates. The lack of the proline loop may be somehow associated with the extracellular role of both pepsin and digestive CAD 3. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Sugarcane is an important crop that has recently become subject to attacks from the weevil Sphenophorus levis, which is not efficiently controlled with chemical insecticides. This demands the development of new control devices for which digestive physiology data are needed. In the present study, ion-exchange chromatography of S. levis whole midgut homogenates, together with enzyme assays with natural and synthetic substrates and specific inhibitors, demonstrated that a cysteine proteinase is a major proteinase, trypsin is a minor one and chymotrypsin is probably negligible. Amylase, maltase and the cysteine proteinase occur in the gut contents and decrease throughout the midgut; trypsin is constant in the entire midgut, whereas a membrane-bound aminopeptidase predominates in the posterior midgut. The cysteine proteinase was purified to homogeneity through ion-exchange chromatography. The purified enzyme had a mass of 37 kDa and was able to hydrolyze Z-Phe-Arg-MCA and Z-Leu-Arg-MCA with k(cat)/K(m) values of 20.0 +/- 1.1 mu M(-1) s(-1) and 30.0 +/- 0.5 mu M(-1) s(-1), respectively, but not Z-Arg-Arg-MCA. The combined results suggest that protein digestion starts in the anterior midgut under the action of a cathepsin L-like proteinase and ends on the surface of posterior midgut cells. All starch digestion takes place in anterior midgut. These data will be instrumental to developing S. levis-resistant sugarcane. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Proteases from the midgut gland of the Farfantepenaeus paulensis juveniles were assessed. Enzyme activity was determined using protease substrates and inhibitors. The effect of pH, temperature and calcium on proteolytic activity was assayed. Caseinolytic activity was analysed in substrate-sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Trypsin, chymotrypsin and leucine aminopeptidase activity was detected. Proteolytic activity was strongly inhibited by the specific trypsin inhibitors. Tosyl-phenylalanine chloromethyl ketone inhibited 59.3% of chymotrypsin activity. The greatest trypsin-like activity occurred at pH 8.0 and 45 degrees C. Chymotrypsin-like activity reached maximal values at alkaline pH (7.2-9.0) and 55 degrees C. CaCl(2) did not increase trypsin-like activity, but rather inhibited it at concentrations of 30 (20%), 50 (30%) and 100 mM (50%). The substrate-SDS-PAGE zymogram revealed eight proteinase bands. Two possibly thermal-resistant (85 degrees C, 30 min) chymotrypsin isoforms were found, which were inhibited by phenyl-methyl-sulphonyl-fluoride. Aminopeptidase activity of enzyme extracts (Arg, Leu, Lys, Phe and Val) and the recommended concentrations of these essential amino acids in penaeid shrimp diets were positively correlated (P < 0.05). Beause protein digestion involves the combined action of different enzymes, adequate knowledge of shrimp digestion and enzyme characteristics is required for the assessment of the digestive potential of different feed sources and development of in vitro digestibility protocols.
Resumo:
Research in rodents demonstrated that psychological stress increases circulating levels of alanine transaminase, aspartate transaminase, and alkaline phosphatase reflecting liver injury. Moreover, chronic posttraumatic stress disorder and transaminases predicted coronary heart disease.
Resumo:
The pancreatic acinar cell produces powerful digestive enzymes packaged in zymogen granules in the apical pole. Ca2+ signals elicited by acetylcholine or cholecystokinin (CCK) initiate enzyme secretion by exocytosis through the apical membrane. Intracellular enzyme activation is normally kept to a minimum, but in the often-fatal human disease acute pancreatitis, autodigestion occurs. How the enzymes become inappropriately activated is unknown. We monitored the cytosolic Ca2+ concentration ([Ca2+]i), intracellular trypsin activation, and its localization in isolated living cells with specific fluorescent probes and studied intracellular vacuole formation by electron microscopy as well as quantitative image analysis (light microscopy). A physiological CCK level (10 pM) eliciting regular Ca2+ spiking did not evoke intracellular trypsin activation or vacuole formation. However, stimulation with 10 nM CCK, evoking a sustained rise in [Ca2+]i, induced pronounced trypsin activation and extensive vacuole formation, both localized in the apical pole. Both processes were abolished by preventing abnormal [Ca2+]i elevation, either by preincubation with the specific Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N-N′,N′-tetraacetic acid (BAPTA) or by removal of external Ca2+. CCK hyperstimulation evokes intracellular trypsin activation and vacuole formation in the apical granular pole. Both of these processes are mediated by an abnormal sustained rise in [Ca2+]i.
Resumo:
Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.
Resumo:
This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management.
Resumo:
Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.
Resumo:
The basidiomycete fungus Gloeophyllum trabeum causes a typical brown rot and is known to use reactive oxygen species in the degradation of cellulose. The extracellular Cel12A is one of the few endo-1,4-β-glucanase produced by G. trabeum. Here we cloned cel12A and heterologously expressed it in Aspergillus niger. The identity of the resulting recombinant protein was confirmed by mass spectrometry. We used the purified GtCel12A to determine its substrate specificity and basic biochemical properties. The G. trabeum Cel12A showed highest activity on β-glucan, followed by lichenan, carboxymethylcellulose, phosphoric acid swollen cellulose, microcrystalline cellulose, and filter paper. The optimal pH and temperature for enzymatic activity were, respectively, 4.5 and 50 °C on β-glucan. Under these conditions specific activity was 239.2 ± 9.1 U mg(-1) and the half-life of the enzyme was 84.6 ± 3.5 hours. Thermofluor studies revealed that the enzyme was most thermal stable at pH 3. Using β-glucan as a substrate, the Km was 3.2 ± 0.5 mg mL(-1) and the Vmax was 0.41 ± 0.02 µmol min(-1). Analysis of the effects of GtCel12A on oat spelt and filter paper by scanning electron microscopy revealed the morphological changes taking place during the process.