935 resultados para Digestive enzyme
Diferentes fontes proteicas em rações de leitões sobre atividade da tripsina e parâmetros sangüíneos
Resumo:
Were used 64 piglets submitted eight treatments: ration with skim milk (SM), three rations with crescent levels of swine plasma (SP), three rations with whole egg (WE) and a ration with high inclusion of soybean meal (SB). Were monitored the blood parameters (BP) in pigs at 27 and at 34 days of age. The piglets were slaugther at 28 and at 35 days of age, for collections pancreas and posterior mensurements of absolut (AW) and relative weigth (RW) of pancreas and trypsin activity (TA). Treatments not influencied AW and TA. Significant effect of the crescent levels was verified of SP, with lineal reduction of the leukocytes and increase of the globular volume, to the 27 days; while to the 34 days, lineal increase of the hematias was observed. At 27 days, animals feds rations with crescent levels of SP have inferior percentage of eosinophils than others that consumed crescent levels of WE. The utilization of SP promoted smaller stimulus to the immune reply, while the use of WE promoted larger humoral reply of the piglets.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A cDNA coding for a digestive cathepsin L, denominated Sl-CathL, was isolated from a cDNA library of Sphenophorus levis larvae, representing the most abundant EST (10.49%) responsible for proteolysis in the midgut. The open reading frame of 972 bp encodes a preproenzyme similar to midgut cathepsin L-like enzymes in other coleopterans. Recombinant Sl-CathL was expressed in Pichia pastoris, with molecular mass of about 42 kDa. The recombinant protein was catalytically activated at low pH and the mature enzyme of 39 kDa displayed thermal instability and maximal activity at 37 degrees C and pH 6.0. Immunocytochemical analysis revealed Sl-CathL production in the midgut epithelium and secretion from vesicles containing the enzyme into the gut lumen, confirming an important role for this enzyme in the digestion of the insect larvae. The expression profile identified by RT-PCR through the biological cycle indicates that Sl-CathL is mainly produced in larval stages, with peak expression in 30-day-old larvae. At this stage, the enzyme is 1250-fold more expressed than in the pupal fase, in which the lowest expression level is detected. This enzyme is also produced in the adult stage, albeit in lesser abundance, assuming the presence of a different array of enzymes in the digestive system of adults. Tissue-specific analysis revealed that Sl-CathL mRNA synthesis occurs fundamentally in the larval midgut, thereby confirming its function as a digestive enzyme, as detected in immunolocalization assays. The catalytic efficiency of the purified recombinant enzyme was calculated using different substrates (Z-Leu-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC) and rSl-CathL exhibited hydrolysis preference for Z-Leu-Arg-AMC (k(cat)/K-m = 37.53 mM S-1), which is similar to other insect cathepsin L-like enzymes. rSl-CathL activity inhibition assays were performed using four recombinant sugarcane cystatins. rSl-CathL was strongly inhibited by recombinant cystatin CaneCPI-4 (K-i = 0.196 nM), indicating that this protease is a potential target for pest control. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Temora longicornis, a dominant calanoid copepod species in the North Sea, is characterised by low lipid reserves and high biomass turnover rates. To survive and reproduce successfully, this species needs continuous food supply and thus requires a highly flexible digestive system to exploit various food sources. Information on the capacity of digestive enzymes is scarce and therefore the aim of our study was to investigate the enzymatic capability to respond to quickly changing nutritional conditions. We conducted two feeding experiments with female T. longicornis from the southern North Sea off Helgoland. In the first experiment in 2005, we tested how digestive enzyme activities and enzyme patterns as revealed by substrate SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) responded to changes in food composition. Females were incubated for three days fed ad libitum with either the heterotrophic dinoflagellate Oxyrrhis marina or the diatom Thalassiosira weissflogii. At the beginning and at the end of the experiment, copepods were deep-frozen for analyses. The lipolytic enzyme activity did not change over the course of the experiment but the enzyme patterns did, indicating a distinct diet-induced response. In a second experiment in 2008, we therefore focused on the enzyme patterns, testing how fast changes occur and whether feeding on the same algal species leads to similar patterns. In this experiment, we kept the females for 4 days at surplus food while changing the algal food species daily. At day 1, copepods were offered O. marina. On day 2, females received the cryptophycean Rhodomonas baltica followed by T. weissflogii on day 3. On day 4 copepods were again fed with O. marina. Each day, copepods were frozen for analysis by means of substrate SDS-PAGE. This showed that within 24 h new digestive enzymes appeared on the electrophoresis gels while others disappeared with the introduction of a new food species, and that the patterns were similar on day 1 and 4, when females were fed with O. marina. In addition, we monitored the fatty acid compositions of the copepods, and this indicated that specific algal fatty acids were quickly incorporated. With such short time lags between substrate availability and enzyme response, T. longicornis can successfully exploit short-term food sources and is thus well adapted to changes in food availability, as they often occur in its natural environment due seasonal variations in phyto- and microzooplankton distribution.
Resumo:
Proteinase-activated receptor 2 (PAR-2) is a recently characterized G-protein coupled receptor that is cleaved and activated by pancreatic trypsin. Trypsin is usually considered a digestive enzyme in the intestinal lumen. We examined the hypothesis that trypsin, at concentrations normally present in the lumen of the small intestine, is also a signaling molecule that specifically regulates enterocytes by activating PAR-2. PAR-2 mRNA was highly expressed in the mucosa of the small intestine and in an enterocyte cell line. Immunoreactive PAR-2 was detected at the apical membrane of enterocytes, where it could be cleaved by luminal trypsin. Physiological concentrations of pancreatic trypsin and a peptide corresponding to the tethered ligand of PAR-2, which is exposed by trypsin cleavage, stimulated generation of inositol 1,4,5-trisphosphate, arachidonic acid release, and secretion of prostaglandin E2 and F1α from enterocytes and a transfected cell line. Application of trypsin to the apical membrane of enterocytes and to the mucosal surface of everted sacs of jejunum also stimulated prostaglandin E2 secretion. Thus, luminal trypsin activates PAR-2 at the apical membrane of enterocytes to stimulate secretion of eicosanoids, which regulate multiple cell types in a paracrine and autocrine manner. We conclude that trypsin is a signaling molecule that specifically regulates enterocytes by triggering PAR-2.
Resumo:
This paper describes inter-specific differences in the distribution of sediment in the gut compartments and in the enzyme and bacterial profiles along the gut of abyssal holothurian species — Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus villosus sampled from a eutrophic site in the NE Atlantic at different times of the year. Proportions of sediments, relative to total gut contents, in the pharynx, oesophagus, anterior and posterior intestine differed significantly in all the inter-species comparisons, but not between inter-seasonal comparisons. Significant differences were also found between the relative proportions of sediments in both the rectum and cloaca of Psychropotes longicauda and Oneirophanta mutabilis. Nineteen enzymes were identified in either gut-tissue or gut-content samples of the holothurians studied. Concentrations of the enzymes in gut tissues and their contents were highly correlated. Greater concentrations of the enzymes were found in the gut tissues suggesting that they are the main source of the enzymes. The suites of enzymes recorded were broadly similar in each of the species sampled collected regardless of the time of the year, and they were similar to those described previously for shallow-water holothurians. Significant inter-specific differences in the gut tissue concentrations of some of the glycosidases suggest dietary differences. For example, Psychropotes longicauda and Pseudostichopus villosus contain higher levels of chitobiase than Oneirophanta mutabilis. There were no seasonal changes in bacterial activity profiles along the guts of O. mutabilis and Pseudostichopus villosus. In both these species bacterial activity and abundance declined between the pharynx/oesophagus and anterior intestine, but then increased along the gut and became greatest in the rectum/cloaca. Although the data sets were more limited for Psychropotes longicauda, bacterial activity increased from the anterior to the posterior intestine but then declined slightly to the rectum/cloaca. These changes in bacterial activity and densities probably reflect changes in the microbial environment along the guts of abyssal holothurians. Such changes suggest that there is potential for microbial breakdown of a broader range of substrates than could be otherwise be achieved by the holothurian itself. However, the present study found no evidence for sedimentary (microbial) sources of hydrolytic enzymes.
Resumo:
Four multiparous cows with cannulas in the rumen and proximal duodenum were used in early lactation in a 4 x 4 Latin square experiment to investigate the effect of method of application of a fibrolytic enzyme product on digestive processes and milk production. The cows were given ad libitum a total mixed ration (TMR) composed of 57% (dry matter basis) forage (3:1 corn silage:grass silage) and 43% concentrates. The TMR contained (g/kg dry matter): 274 neutral detergent fiber, 295 starch, 180 crude protein. Treatments were TMR alone or TMR with the enzyme product added (2 kg/1000 kg TMR dry matter) either sprayed on the TMR 1 h before the morning feed (TMR-E), sprayed only on the concentrate the day before feeding (Concs-E), or infused into the rumen for 14 h/d (Rumen-E). There Was no significant effect on either feed intake or milk yield but both were highest on TMR-E. Rumen digestibility of dry matter, organic matter, and starch was unaffected by the enzyme. Digestibility of NDF was lowest on TMR-E in the rumen but highest postruminally. Total Tract digestibility was highest on TMR-E for dry matter, organic matter, and starch but treatment differences were nonsignificant for neutral detergent fiber: Corn silage stover retention time in the rumen was reduced by all enzyme treatments but postruminal transit time vas increased so the decline in total tract retention. time with enzymes was not significant. It is suggested that the tendency for enzymes to reduce particle retention time in the rumen may, by reducing the time available for fibrolysis to occur, at least partly explain the variability in the reported responses to enzyme treatment.
Resumo:
The present study aimed to contribute to the knowledge on the intraspecific variations of enzyme activities in populations of Calanus finmarchicus from different longitudes across the North Atlantic Ocean and their relation to changing environmental conditions. C. finmarchicus was sampled across the North Atlantic in basins with decreasing temperature regimes from east to west (Iceland Basin, Irminger Basin and Labrador Basin) in late March/early April 2013. Potential maximum enzyme activities of digestive (proteinases and lipases/esterases) and metabolic (citrate synthase) enzymes of copepods from all sampling stations were analysed and thermal profiles (5-50°C) of enzyme activities were determined. In order to investigate its acclimation potential, C. finmarchicus were acclimated to 4°C and 15°C for two weeks and thermal profiles of enzyme activities were compared afterwards.