964 resultados para Dental stress analysis
Resumo:
The effects of repeating thickness periods on stress are studied in ZrO2/SiO2 multilayers deposited by electron-beam evaporation on BK7 glass and fused-silica substrates. The results show that the residual stress is compressive and decreases with an increase of the periods of repeating thickness in the ZrO2/SiO2 multilayers. At the same time, the residual stress in multilayers deposited on BK7 glass is less than that of samples deposited on fused silica. The variation of the microstructure examined by x-ray diffraction shows that microscopic deformation does not correspond to macroscopic stress, which may be due to variation of the interface stress. (c) 2005 Optical Society of America.
Resumo:
At medium to high frequencies the dynamic response of a built-up engineering system, such as an automobile, can be sensitive to small random manufacturing imperfections. Ideally the statistics of the system response in the presence of these uncertainties should be computed at the design stage, but in practice this is an extremely difficult task. In this paper a brief review of the methods available for the analysis of systems with uncertainty is presented, and attention is then focused on two particular "non- parametric" methods: statistical energy analysis (SEA), and the hybrid method. The main governing equations are presented, and a number of example applications are considered, ranging from academic benchmark studies to industrial design studies. © 2009 IOP Publishing Ltd.
Resumo:
A 5.35-mu m-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) omega-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction theta - 2. scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.
Resumo:
An n-InP-based InGaAsP multiple-quantum-well wafer was bonded with p-Si by chemical surface activated bonding at 70 degrees C, and then annealed at 450 degrees C. Different thermal expansion coefficients between InP and Si will induce thermal stresses in the bonded wafer. Planar and cross-sectional distributions of thermal stress in the bonded InP-Si pairs were analyzed by a two-dimensional finite element method. In addition, the normal, peeling, and shear stresses were calculated by an analytic method. Furthermore, x-ray double crystalline diffraction was applied to measure the thermal strain and the strain caused by the mismatching of the crystalline orientation between InP (100) and Si (100). The wavelength redshift of the photoluminescence (PL) spectrum due to thermal strain was investigated via the calculation of the band structure, which is in agreement with the measured PL spectra.
Resumo:
The stress distribution in silica optical waveguides on silicon is calculated by using finite element method (FEM). The waveguides are mainly subjected to compressive stress along the x direction and the z direction, and it is accumulated near the interfaces between the core and cladding layers. The shift of central wavelength of silica arrayed waveguide grating (AWG) on silicon-substrate with the designed wavelength and the polarization dependence are caused by the stress in the silica waveguides.
Resumo:
Finite Element Method is used in this article to analyze the stress of CR superferric magnet. Magnetic force and the stress caused by this force are calculated. The thermal stress and strain of the coil caused by cooling down is also analyzed. The result will be taken as a check for the design of the coil and coilcase, and also as a reference for the optimization of further design and quench protection.
Resumo:
国际反质子与离子大科学工程(FAIR)项目是一个大型的国际合作项目,其中Super-FRS超导二极磁体由中国科学院近代物理研究所研制。利用ADINA有限元程序对项目中的超导Super-FRS磁体线圈的失超过程进行了模拟分析。利用C程序对ADINA程序进行二次开发以便对有限元求解器的调用和载荷的控制。分析结果显示:在失超过程中产生的最大热应力为26 MPa,可能产生的声波频率在35 Hz左右。
Resumo:
The superconducting magnet of the LPT (Lanzhou Penning trap) consists of nine coaxial coils. The maximum magnetic field is 7 T and thus results in a large magnetic force. In order to assure the mechanical stability, it is necessary to do the stress analysis of the magnet system. The 3D Finite Element Analysis of thermal and mechanical behavior was presented in this paper. For the numerical simulation and analysis of the phenomena inside the structure, the ADINA and TOSCA code were chosen right from start. The ADINA code is commonly used for numerical simulations of the structure analysis [1] and the TOSCA code is professional software to calculate the magnetic field and Lorentz Forces. The results of the analysis were evaluated in terms of the stress and deformation.
Resumo:
A novel three-dimensional finite volume (FV) procedure is described in detail for the analysis of geometrically nonlinear problems. The FV procedure is compared with the conventional finite element (FE) Galerkin approach. FV can be considered to be a particular case of the weighted residual method with a unit weighting function, where in the FE Galerkin method we use the shape function as weighting function. A Fortran code has been developed based on the finite volume cell vertex formulation. The formulation is tested on a number of geometrically nonlinear problems. In comparison with FE, the results reveal that FV can reach the FE results in a higher mesh density.