903 resultados para Data selection
Resumo:
El Servei d'Avaluació, Seguiment i Selecció de l'ISPC han elaborat un estudi sobre el perfil de personalitat dels aspirants al Curs de Formació bàsica per policies, que es va presentar a l'International Society for the Study of Individual Differences Meeting celebrat al CosmoCaixa de Barcelona i que organitzen conjuntament l’Associació Iberoamericana per a la recerca de les diferències individuals i la Universitat de Barcelona. L’estudi, titulat Revised NEO Personality Inventory Normative Data for Catalan police officer selection: A preliminary study, té com a objectiu comparar els perfils de personalitat d’una mostra d’aspirants de l’ISPC amb els resultats d’una mostra d’aspirants a policia dels EUA, publicada en una revista científica de prestigi el mes de febrer passat. Els resultats mostren que els aspirants catalans destaquen per obtenir millors puntuacions en les dimensions de responsabilitat i amabilitat, cosa que indicaria que aquest tret es valora especialment durant el procés de selecció de la policia de Catalunya; en altres característiques de la personalitat les dues mostres obtenen resultats similars. Els trets característics del perfil del policia català seria el de persones estables emocionalment, poc impulsives, amb capacitat per gestionar l’estrés, orientades a les persones, agradables, sociables, responsables, disciplinades i cauteloses. Enllaç a: International Society for the Study of Individual Differences Meeting :http://www.issid.org/conferences/ISSID2013/ISSIDconference2013.html
Resumo:
Background Computerised databases of primary care clinical records are widely used for epidemiological research. In Catalonia, the InformationSystem for the Development of Research in Primary Care (SIDIAP) aims to promote the development of research based on high-quality validated data from primary care electronic medical records. Objective The purpose of this study is to create and validate a scoring system (Registry Quality Score, RQS) that will enable all primary care practices (PCPs) to be selected as providers of researchusable data based on the completeness of their registers. Methods Diseases that were likely to be representative of common diagnoses seen in primary care were selected for RQS calculations. The observed/ expected cases ratio was calculated for each disease. Once we had obtained an estimated value for this ratio for each of the selected conditions we added up the ratios calculated for each condition to obtain a final RQS. Rate comparisons between observed and published prevalences of diseases not included in the RQS calculations (atrial fibrillation, diabetes, obesity, schizophrenia, stroke, urinary incontinenceand Crohn’s disease) were used to set the RQS cutoff which will enable researchers to select PCPs with research-usable data. Results Apart from Crohn’s disease, all prevalences were the same as those published from the RQS fourth quintile (60th percentile) onwards. This RQS cut-off provided a total population of 1 936 443 (39.6% of the total SIDIAP population). Conclusions SIDIAP is highly representative of the population of Catalonia in terms of geographical, age and sex distributions. We report the usefulness of rate comparison as a valid method to establish research-usable data within primary care electronic medical records
Resumo:
In development of human medicines, it is important to predict early and accurately enough the disease and patient population to be treated as well as the effective and safe dose range of the studied medicine. This is pursued by using preclinical research models, clinical pharmacology and early clinical studies with small sample sizes. When successful, this enables effective development of medicines and reduces unnecessary exposure of healthy subjects and patients to ineffectice or harmfull doses of experimental compounds. Toremifene is a selective estrogen receptor modulator (SERM) used for treatment of breast cancer. Its development was initiated in 1980s when selection of treatment indications and doses were based on research in cell and animal models and on noncomparative clinical studies including small number of patients. Since the early development phase, the treatment indication, the patient population and the dose range were confirmed in large comparative clinical studies in patients. Based on the currently available large and long term clinical study data the aim of this study was to investigate how the early phase studies were able to predict the treatment indication, patient population and the dose range of the SERM. As a conclusion and based on the estrogen receptor mediated mechanism of action early studies were able to predict the treatment indication, target patient population and a dose range to be studied in confirmatory clinical studies. However, comparative clinical studies are needed to optimize dose selection of the SERM in treatment of breast cancer.
Resumo:
This thesis examines the application of data envelopment analysis as an equity portfolio selection criterion in the Finnish stock market during period 2001-2011. A sample of publicly traded firms in the Helsinki Stock Exchange is examined in this thesis. The sample covers the majority of the publicly traded firms in the Helsinki Stock Exchange. Data envelopment analysis is used to determine the efficiency of firms using a set of input and output financial parameters. The set of financial parameters consist of asset utilization, liquidity, capital structure, growth, valuation and profitability measures. The firms are divided into artificial industry categories, because of the industry-specific nature of the input and output parameters. Comparable portfolios are formed inside the industry category according to the efficiency scores given by the DEA and the performance of the portfolios is evaluated with several measures. The empirical evidence of this thesis suggests that with certain limitations, data envelopment analysis can successfully be used as portfolio selection criterion in the Finnish stock market when the portfolios are rebalanced at annual frequency according to the efficiency scores given by the data envelopment analysis. However, when the portfolios were rebalanced every two or three years, the results are mixed and inconclusive.
Resumo:
An appropriate supplier selection and its profound effects on increasing the competitive advantage of companies has been widely discussed in supply chain management (SCM) literature. By raising environmental awareness among companies and industries they attach more importance to sustainable and green activities in selection procedures of raw material providers. The current thesis benefits from data envelopment analysis (DEA) technique to evaluate the relative efficiency of suppliers in the presence of carbon dioxide (CO2) emission for green supplier selection. We incorporate the pollution of suppliers as an undesirable output into DEA. However, to do so, two conventional DEA model problems arise: the lack of the discrimination power among decision making units (DMUs) and flexibility of the inputs and outputs weights. To overcome these limitations, we use multiple criteria DEA (MCDEA) as one alternative. By applying MCDEA the number of suppliers which are identified as efficient will be decreased and will lead to a better ranking and selection of the suppliers. Besides, in order to compare the performance of the suppliers with an ideal supplier, a “virtual” best practice supplier is introduced. The presence of the ideal virtual supplier will also increase the discrimination power of the model for a better ranking of the suppliers. Therefore, a new MCDEA model is proposed to simultaneously handle undesirable outputs and virtual DMU. The developed model is applied for green supplier selection problem. A numerical example illustrates the applicability of the proposed model.
Resumo:
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS.
Resumo:
For years, choosing the right career by monitoring the trends and scope for different career paths have been a requirement for all youngsters all over the world. In this paper we provide a scientific, data mining based method for job absorption rate prediction and predicting the waiting time needed for 100% placement, for different engineering courses in India. This will help the students in India in a great deal in deciding the right discipline for them for a bright future. Information about passed out students are obtained from the NTMIS ( National technical manpower information system ) NODAL center in Kochi, India residing in Cochin University of science and technology
Resumo:
In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.
Resumo:
In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.
Resumo:
Background: Affymetrix GeneChip arrays are widely used for transcriptomic studies in a diverse range of species. Each gene is represented on a GeneChip array by a probe- set, consisting of up to 16 probe-pairs. Signal intensities across probe- pairs within a probe-set vary in part due to different physical hybridisation characteristics of individual probes with their target labelled transcripts. We have previously developed a technique to study the transcriptomes of heterologous species based on hybridising genomic DNA (gDNA) to a GeneChip array designed for a different species, and subsequently using only those probes with good homology. Results: Here we have investigated the effects of hybridising homologous species gDNA to study the transcriptomes of species for which the arrays have been designed. Genomic DNA from Arabidopsis thaliana and rice (Oryza sativa) were hybridised to the Affymetrix Arabidopsis ATH1 and Rice Genome GeneChip arrays respectively. Probe selection based on gDNA hybridisation intensity increased the number of genes identified as significantly differentially expressed in two published studies of Arabidopsis development, and optimised the analysis of technical replicates obtained from pooled samples of RNA from rice. Conclusion: This mixed physical and bioinformatics approach can be used to optimise estimates of gene expression when using GeneChip arrays.
Resumo:
Recent studies showed that features extracted from brain MRIs can well discriminate Alzheimer’s disease from Mild Cognitive Impairment. This study provides an algorithm that sequentially applies advanced feature selection methods for findings the best subset of features in terms of binary classification accuracy. The classifiers that provided the highest accuracies, have been then used for solving a multi-class problem by the one-versus-one strategy. Although several approaches based on Regions of Interest (ROIs) extraction exist, the prediction power of features has not yet investigated by comparing filter and wrapper techniques. The findings of this work suggest that (i) the IntraCranial Volume (ICV) normalization can lead to overfitting and worst the accuracy prediction of test set and (ii) the combined use of a Random Forest-based filter with a Support Vector Machines-based wrapper, improves accuracy of binary classification.
Resumo:
Seamless phase II/III clinical trials are conducted in two stages with treatment selection at the first stage. In the first stage, patients are randomized to a control or one of k > 1 experimental treatments. At the end of this stage, interim data are analysed, and a decision is made concerning which experimental treatment should continue to the second stage. If the primary endpoint is observable only after some period of follow-up, at the interim analysis data may be available on some early outcome on a larger number of patients than those for whom the primary endpoint is available. These early endpoint data can thus be used for treatment selection. For two previously proposed approaches, the power has been shown to be greater for one or other method depending on the true treatment effects and correlations. We propose a new approach that builds on the previously proposed approaches and uses data available at the interim analysis to estimate these parameters and then, on the basis of these estimates, chooses the treatment selection method with the highest probability of correctly selecting the most effective treatment. This method is shown to perform well compared with the two previously described methods for a wide range of true parameter values. In most cases, the performance of the new method is either similar to or, in some cases, better than either of the two previously proposed methods.
Resumo:
Phylogenetic analyses of chloroplast DNA sequences, morphology, and combined data have provided consistent support for many of the major branches within the angiosperm, clade Dipsacales. Here we use sequences from three mitochondrial loci to test the existing broad scale phylogeny and in an attempt to resolve several relationships that have remained uncertain. Parsimony, maximum likelihood, and Bayesian analyses of a combined mitochondrial data set recover trees broadly consistent with previous studies, although resolution and support are lower than in the largest chloroplast analyses. Combining chloroplast and mitochondrial data results in a generally well-resolved and very strongly supported topology but the previously recognized problem areas remain. To investigate why these relationships have been difficult to resolve we conducted a series of experiments using different data partitions and heterogeneous substitution models. Usually more complex modeling schemes are favored regardless of the partitions recognized but model choice had little effect on topology or support values. In contrast there are consistent but weakly supported differences in the topologies recovered from coding and non-coding matrices. These conflicts directly correspond to relationships that were poorly resolved in analyses of the full combined chloroplast-mitochondrial data set. We suggest incongruent signal has contributed to our inability to confidently resolve these problem areas. (c) 2007 Elsevier Inc. All rights reserved.