1000 resultados para DYNAMIC RECRYSTALLIZATION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The evolution of dynamic ferrite softening in a plain-carbon steel was investigated by torsion tests during warm deformation at 810 °C, in the two-phase (ferrite + austenite) region, and strain rate of 0.1 s−1 with different strains up to 50. The warm flow behaviour and ferrite microstructural parameters, such as grain size, misorientation angle across ferrite/ferrite boundaries, and the fraction of high-angle and low-angle grain/subgrain boundaries were quantified using electron back scatter diffraction. The results show that with increasing strain up to not, vert, similar2, the ferrite grain size and fraction of high-angle boundaries rapidly decrease and the fraction of low-angle boundaries increases. However, these parameters remain approximately unchanged with increasing strain from not, vert, similar2 to 50. The dynamic softening mechanism observed during large strain ferritic deformation is explained by dynamic recovery and continuous dynamic recrystallization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present paper examines the development of grain size during the recrystallization of magnesium alloys and the influence the grain size has on the mechanical response. In magnesium alloys grain refinement improves the strength-ductility balance. This simultaneous increase in both strength and ductility is ascribed to the impact the grain size has on deformation twinning. The mechanisms by which the grain size is established during hot working are shown to be conventional dynamic recrystallization followed by post-dynamic recrystallization. The role of alloying additionon both of these reactions is briefly considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to improve the understanding of the dynamic and post-dynamic recrystallization behaviours of AISI 304 austenitic stainless steel, a series of hot torsion test have been performed under a range of deformation conditions. The mechanical and microstructural features of dynamic recrystallization (DRX) were characterized to compare and contrast them with those of the post-dynamic recrystallization. A necklace type of dynamically recrystallized microstructure was observed during hot deformation at 900 °C and at a strain rate of 0.01 s−1. Following deformation, the dependency of time for 50% recrystallization, t50, changed from “strain dependent” to “strain independent” at a transition strain (ε*), which is significantly beyond the peak. This transition strain was clearly linked to the strain for 50% dynamic recrystallization during deformation. The interrelations between the fraction of dynamically recrystallized microstructure, the evolution of post-dynamically recrystallized microstructure and the final grain size have been established. The results also showed an important role of grain growth on softening of deformed austenite.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The postdeformation recrystallization behavior of a hot-deformed austenitic stainless steel was investigated based on the first part of this study, in which the microstructure development during hot deformation and, in particular, the evolution of dynamic recrystallization (DRX), was studied. The effect of different parameters such as strain, strain rate, and temperature were examined. The dependency of the time for 50 pct softening, t 50, changed from “strain dependent” to “strain independent” at a transition strain (ε*) that was in the steady-state area of the hot deformation flow curve. The fully recrystallized microstructure showed a similar transition in strain sensitivity. However, this occurred at stains greater than ε*. A mathematical model was developed to predict the transition strain under different deformation conditions. Microstructural measurements show that the transition strain corresponds to approximately 50 pct DRX in the deformed structure at the point of unloading.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of initial grain size on the recrystallization behavior of a type 304 austenitic stainless steel during and following hot deformation was investigated using hot torsion. The refinement of the initial grain size to 8 μm, compared with an initial grain size of 35 μm, had considerable effects on the dynamic recrystallization (DRX) and post-DRX phenomena. For both DRX and post-DRX, microstructural investigations using electron backscattered diffraction confirmed an interesting transition from conventional (discontinuous) to continuous DRX with a decrease in the initial grain size. Also, there were unexpected effects of initial grain size on DRX and post-DRX grain sizes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The texture and substructure development during post-dynamic annealing of an austenitic Ni-30%Fe model alloy after complete dynamic recrystallization was investigated using electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). A novel mechanism of metadynamic softening is proposed based on the experimental investigation of the grain structure, crystallographic texture and dislocation substructure evolution. The initial softening stage involved rapid growth of the dynamically formed nuclei and migration of the mobile boundaries. The subboundaries within DRX grains progressively disintegrated through dislocation climb and dislocation annihilation, which ultimately led to the formation of dislocation-free grains, while the grain boundary migration gradually became slower. As a result, the DRX texture was largely preserved throughout the annealing process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work examines the microstructure that evolves during the hot deformation and subsequent annealing of magnesium alloy AZ31. In particular, the role of strain on the progression of dynamic recrystallization (DRX) and post-deformation recrystallization is investigated. It is found that the grain size developed after post-deformation recrystallization is larger when the deformation strain, and hence the degree of DRX, is low (for strains up to 0.4). Also, the kinetics of post-deformation recrystallization are found to be independent of strain for strain values of 0.4 and above. Whilst increasing strain alters the texture of the un-recrystallized microstructure (for the deformation mode examined), the texture does not change significantly during post-deformation recrystallization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This data looks at the effect of grain boundary movement on the characteristics of substructure development within the DRX regime. Different thermo-mechanical processing routes were employed to produce a range of DRX grain sizes at a given deformation temperature. The development of dislocation substructure was investigated using electron back-scattered diffraction (EBSD) in conjunction with transmission electron microscopy (TEM).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the hot working of austenitic stainless steels the shape of the flow curve is strongly influenced by the strain rate. Low strain rate deformation results in flow curves typical of dynamic recrystallization (DRX) but as the strain rate increases the shape changes to a ‘flat-top’ curve. This has traditionally been thought to indicate no DRX is taking place and that dynamic recovery (DRV) is the only operating softening mechanism. Examining the work-hardening behaviour and corresponding deformation microstructures showed this is not the case for austenitic stainless steel, as clear evidence of dynamic recrystallization process can be seen. The post-deformation recrystallization kinetics can be modelled using a standard Avrami equation with an Avrami exponent, n, of 1.15. With an increasing value of the Zener-Hollomon parameter it was found that the kinetics of recrystallization become less strain rate sensitive until at the highest values (highest strain rates/lowest temperatures) the recrystallization kinetics become strain rate insensitive.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work evaluates the effect of co-existence of a large volume fraction of δ-ferrite on the hot deformation and dynamic recrystallization (DRX) of austenite using comparative hot torsion tests on AISI 304 austenitic and 2205 duplex stainless steels. The comparison was performed under similar deformation conditions (i.e. temperature and strain rate) and also under similar Zener-Hollomon, Z, values. The torsion data were combined with electron backscatter diffraction (EBSD) analysis to study the microstructure development. The results imply a considerable difference between DRX mechanisms, austenite grain sizes and also DRX kinetics of two steels. Whereas austenitic stainless steel shows the start of DRX at very low strains and then development of that microstructure based on the necklace structure, the DRX phenomena in the austenite phase of duplex structure does not proceed to a very high fraction. Also, the DRX kinetics in the austenitic steel are much higher than the austenite phase of the duplex steel. The results suggest that at a similar deformation condition the DRX grain size of austenitic steel is almost three times larger than the DRX grains of austenite phase in duplex steel. Similarly, the ratio of DRX grain size in the austenitic to the duplex structure at the same Z values is about 1.5.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hot deformation behavior of hot isostatically pressed (HIPd) P/M IN-100 superalloy has been studied in the temperature range 1000-1200 degrees C and strain rate range 0.0003-10 s(-1) using hot compression testing. A processing map has been developed on the basis of these data and using the principles of dynamic materials modelling. The map exhibited three domains: one at 1050 degrees C and 0.01 s(-1), with a peak efficiency of power dissipation of approximate to 32%, the second at 1150 degrees C and 10 s(-1), with a peak efficiency of approximate to 36% and the third at 1200 degrees C and 0.1 s(-1), with a similar efficiency. On the basis of optical and electron microscopic observations, the first domain was interpreted to represent dynamic recovery of the gamma phase, the second domain represents dynamic recrystallization (DRX) of gamma in the presence of softer gamma', while the third domain represents DRX of the gamma phase only. The gamma' phase is stable upto 1150 degrees C, gets deformed below this temperature and the chunky gamma' accumulates dislocations, which at larger strains cause cracking of this phase. At temperatures lower than 1080 degrees C and strain rates higher than 0.1 s(-1), the material exhibits flow instability, manifested in the form of adiabatic shear bands. The material may be subjected to mechanical processing without cracking or instabilities at 1200 degrees C and 0.1 s(-1), which are the conditions for DRX of the gamma phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Power dissipation maps have been generated in the temperature range of 900 degrees C to 1150 degrees C and strain rate range of 10(-3) to 10 s(-1) for a cast aluminide alloy Ti-24Al-20Nb using dynamic material model. The results define two distinct regimes of temperature and strain rate in which efficiency of power dissipation is maximum. The first region, centered around 975 degrees C/0.1 s(-1), is shown to correspond to dynamic recrystallization of the alpha(2) phase and the second, centered around 1150 degrees C/0.001 s(-1), corresponds to dynamic recovery and superplastic deformation of the beta phase. Thermal activation analysis using the power law creep equation yielded apparent activation energies of 854 and 627 kJ/mol for the first and second regimes, respectively. Reanalyzing the data by alternate methods yielded activation energies in the range of 170 to 220 kJ/mol and 220 to 270 kJ/mol for the first and second regimes, respectively. Cross slip was shown to constitute the activation barrier in both cases. Two distinct regimes of processing instability-one at high strain rates and the other at the low strain rates in the lower temperature regions-have been identified, within which shear bands are formed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth of the nanocrystalline tribolayer produced in oxygen free high conductivity copper after sliding against 440C stainless steel was studied. Tests were conducted on a pin-on-disk tribometer at sliding velocities of 0.05 and 1.0 m/s and sliding times of 0.1 to 10,000 s. Subsurface deformation and the growth of the tribolayer as a function of time were studied with the use of transmission electron microscopy and ion induced secondary electron microscopy. A continuous nanocrystalline tribolayer was produced after as little as 10 s of sliding at both sliding velocities. The tribolayer produced by sliding at 0.05 m/s continued to grow at sliding times up to 10,000 s and developed texture. Dynamic recrystallization of the tribolayer at a sliding velocity of 1.0 m/s inhibited the growth of a continuous anocrystalline tribolayer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental evidence suggests that high strain rates, stresses, strains and temperatures are experienced near sliding interfaces. The associated microstructural changes are due to several dynamic an interacting phenomena. 3D non-equilibrium molecular dynamics (MD) simulations of sliding were conducted with the aim of understanding the dynamic processes taking place in crystalline tribopairs, with a focus on plastic deformation and microstructural evolution. Embedded atom potentials were employed for simulating sliding of an Fe-Cu tribopair. Sliding velocity, crystal orientation and presence of lattice defects were some of the variables in these simulations. Extensive plastic deformation involving dislocation and twin activity, dynamic recrystallization, amorphization and/or nanocrystallization, mechanical mixing and material transfer were observed. Mechanical mixing in the vicinity of the sliding interface was observed even in the Fe-Cu system, which would cluster under equilibrium conditions, hinting at the ballistic nature of the process. Flow localization was observed at high velocities implying the possible role of adiabatic heating. The presence of preexisting defects (such as dislocations and interfaces) played a pivotal role in determining friction and microstructural evolution. The study also shed light on the relationship between adhesion and plastic deformation, and friction. Comparisons with experiments suggest that such simulations can indeed provide valuable insights that are difficult to obtain from experiments.