374 resultados para DISCRETIZATION
Resumo:
We consider a stochastic regularization method for solving the backward Cauchy problem in Banach spaces. An order of convergence is obtained on sourcewise representative elements.
Resumo:
This paper aims to develop an implicit meshless collocation technique based on the moving least squares approximation for numerical simulation of the anomalous subdiffusion equation(ASDE). The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach related to the time discretization are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling of ASDEs.
Resumo:
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with a fractional order temporal derivative have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, the fractional cable equation involving two integro-differential operators is considered. The Galerkin finite element approximations of the fractional cable equation are proposed. The main contribution of this work is outlined as follow: • A semi-discrete finite difference approximation in time is proposed. We prove that the scheme is unconditionally stable, and the numerical solution converges to the exact solution with order O(Δt). • A semi-discrete difference scheme for improving the order of convergence for solving the fractional cable equation is proposed, and the numerical solution converges to the exact solution with order O((Δt)2). • Based on the above semi-discrete difference approximations, Galerkin finite element approximations in space for a full discretization are also investigated. • Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matern correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data.
Resumo:
The study of the relationship between macroscopic traffic parameters, such as flow, speed and travel time, is essential to the understanding of the behaviour of freeway and arterial roads. However, the temporal dynamics of these parameters are difficult to model, especially for arterial roads, where the process of traffic change is driven by a variety of variables. The introduction of the Bluetooth technology into the transportation area has proven exceptionally useful for monitoring vehicular traffic, as it allows reliable estimation of travel times and traffic demands. In this work, we propose an approach based on Bayesian networks for analyzing and predicting the complex dynamics of flow or volume, based on travel time observations from Bluetooth sensors. The spatio-temporal relationship between volume and travel time is captured through a first-order transition model, and a univariate Gaussian sensor model. The two models are trained and tested on travel time and volume data, from an arterial link, collected over a period of six days. To reduce the computational costs of the inference tasks, volume is converted into a discrete variable. The discretization process is carried out through a Self-Organizing Map. Preliminary results show that a simple Bayesian network can effectively estimate and predict the complex temporal dynamics of arterial volumes from the travel time data. Not only is the model well suited to produce posterior distributions over single past, current and future states; but it also allows computing the estimations of joint distributions, over sequences of states. Furthermore, the Bayesian network can achieve excellent prediction, even when the stream of travel time observation is partially incomplete.
Resumo:
A sub‒domain smoothed Galerkin method is proposed to integrate the advantages of mesh‒free Galerkin method and FEM. Arbitrarily shaped sub‒domains are predefined in problems domain with mesh‒free nodes. In each sub‒domain, based on mesh‒free Galerkin weak formulation, the local discrete equation can be obtained by using the moving Kriging interpolation, which is similar to the discretization of the high‒order finite elements. Strain smoothing technique is subsequently applied to the nodal integration of sub‒domain by dividing the sub‒domain into several smoothing cells. Moreover, condensation of DOF can also be introduced into the local discrete equations to improve the computational efficiency. The global governing equations of present method are obtained on the basis of the scheme of FEM by assembling all local discrete equations of the sub‒domains. The mesh‒free properties of Galerkin method are retained in each sub‒domain. Several 2D elastic problems have been solved on the basis of this newly proposed method to validate its computational performance. These numerical examples proved that the newly proposed sub‒domain smoothed Galerkin method is a robust technique to solve solid mechanics problems based on its characteristics of high computational efficiency, good accuracy, and convergence.
Resumo:
Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.
Resumo:
The fractional Fokker-Planck equation is an important physical model for simulating anomalous diffusions with external forces. Because of the non-local property of the fractional derivative an interesting problem is to explore high accuracy numerical methods for fractional differential equations. In this paper, a space-time spectral method is presented for the numerical solution of the time fractional Fokker-Planck initial-boundary value problem. The proposed method employs the Jacobi polynomials for the temporal discretization and Fourier-like basis functions for the spatial discretization. Due to the diagonalizable trait of the Fourier-like basis functions, this leads to a reduced representation of the inner product in the Galerkin analysis. We prove that the time fractional Fokker-Planck equation attains the same approximation order as the time fractional diffusion equation developed in [23] by using the present method. That indicates an exponential decay may be achieved if the exact solution is sufficiently smooth. Finally, some numerical results are given to demonstrate the high order accuracy and efficiency of the new numerical scheme. The results show that the errors of the numerical solutions obtained by the space-time spectral method decay exponentially.
Resumo:
We consider the problem of estimating the optimal parameter trajectory over a finite time interval in a parameterized stochastic differential equation (SDE), and propose a simulation-based algorithm for this purpose. Towards this end, we consider a discretization of the SDE over finite time instants and reformulate the problem as one of finding an optimal parameter at each of these instants. A stochastic approximation algorithm based on the smoothed functional technique is adapted to this setting for finding the optimal parameter trajectory. A proof of convergence of the algorithm is presented and results of numerical experiments over two different settings are shown. The algorithm is seen to exhibit good performance. We also present extensions of our framework to the case of finding optimal parameterized feedback policies for controlled SDE and present numerical results in this scenario as well.
Resumo:
Numerically discretized dynamic optimization problems having active inequality and equality path constraints that along with the dynamics induce locally high index differential algebraic equations often cause the optimizer to fail in convergence or to produce degraded control solutions. In many applications, regularization of the numerically discretized problem in direct transcription schemes by perturbing the high index path constraints helps the optimizer to converge to usefulm control solutions. For complex engineering problems with many constraints it is often difficult to find effective nondegenerat perturbations that produce useful solutions in some neighborhood of the correct solution. In this paper we describe a numerical discretization that regularizes the numerically consistent discretized dynamics and does not perturb the path constraints. For all values of the regularization parameter the discretization remains numerically consistent with the dynamics and the path constraints specified in the, original problem. The regularization is quanti. able in terms of time step size in the mesh and the regularization parameter. For full regularized systems the scheme converges linearly in time step size.The method is illustrated with examples.
Resumo:
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier-Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.
Resumo:
This paper discusses the consistent regularization property of the generalized α method when applied as an integrator to an initial value high index and singular differential-algebraic equation model of a multibody system. The regularization comes from within the discretization itself and the discretization remains consistent over the range of values the regularization parameter may take. The regularization involves increase of the smallest singular values of the ill-conditioned Jacobian of the discretization and is different from Baumgarte and similar techniques which tend to be inconsistent for poor choice of regularization parameter. This regularization also helps where pre-conditioning the Jacobian by scaling is of limited effect, for example, when the scleronomic constraints contain multiple closed loops or singular configuration or when high index path constraints are present. The feed-forward control in Kane's equation models is additionally considered in the numerical examples to illustrate the effect of regularization. The discretization presented in this work is adopted to the first order DAE system (unlike the original method which is intended for second order systems) for its A-stability and same order of accuracy for positions and velocities.
Resumo:
A new framework is proposed in this work to solve multidimensional population balance equations (PBEs) using the method of discretization. A continuous PBE is considered as a statement of evolution of one evolving property of particles and conservation of their n internal attributes. Discretization must therefore preserve n + I properties of particles. Continuously distributed population is represented on discrete fixed pivots as in the fixed pivot technique of Kumar and Ramkrishna [1996a. On the solution of population balance equation by discretization-I A fixed pivot technique. Chemical Engineering Science 51(8), 1311-1332] for 1-d PBEs, but instead of the earlier extensions of this technique proposed in the literature which preserve 2(n) properties of non-pivot particles, the new framework requires n + I properties to be preserved. This opens up the use of triangular and tetrahedral elements to solve 2-d and 3-d PBEs, instead of the rectangles and cuboids that are suggested in the literature. Capabilities of computational fluid dynamics and other packages available for generating complex meshes can also be harnessed. The numerical results obtained indeed show the effectiveness of the new framework. It also brings out the hitherto unknown role of directionality of the grid in controlling the accuracy of the numerical solution of multidimensional PBEs. The numerical results obtained show that the quality of the numerical solution can be improved significantly just by altering the directionality of the grid, which does not require any increase in the number of points, or any refinement of the grid, or even redistribution of pivots in space. Directionality of a grid can be altered simply by regrouping of pivots.
Resumo:
We explore an isoparametric interpolation of total quaternion for geometrically consistent, strain-objective and path-independent finite element solutions of the geometrically exact beam. This interpolation is a variant of the broader class known as slerp. The equivalence between the proposed interpolation and that of relative rotation is shown without any recourse to local bijection between quaternions and rotations. We show that, for a two-noded beam element, the use of relative rotation is not mandatory for attaining consistency cum objectivity and an appropriate interpolation of total rotation variables is sufficient. The interpolation of total quaternion, which is computationally more efficient than the one based on local rotations, converts nodal rotation vectors to quaternions and interpolates them in a manner consistent with the character of the rotation manifold. This interpolation, unlike the additive interpolation of total rotation, corresponds to a geodesic on the rotation manifold. For beam elements with more than two nodes, however, a consistent extension of the proposed quaternion interpolation is difficult. Alternatively, a quaternion-based procedure involving interpolation of relative rotations is proposed for such higher order elements. We also briefly discuss a strategy for the removal of possible singularity in the interpolation of quaternions, proposed in [I. Romero, The interpolation of rotations and its application to finite element models of geometrically exact rods, Comput. Mech. 34 (2004) 121–133]. The strain-objectivity and path-independence of solutions are justified theoretically and then demonstrated through numerical experiments. This study, being focused only on the interpolation of rotations, uses a standard finite element discretization, as adopted by Simo and Vu-Quoc [J.C. Simo, L. Vu-Quoc, A three-dimensional finite rod model part II: computational aspects, Comput. Methods Appl. Mech. Engrg. 58 (1986) 79–116]. The rotation update is achieved via quaternion multiplication followed by the extraction of the rotation vector. Nodal rotations are stored in terms of rotation vectors and no secondary storages are required.
Resumo:
A detailed mechanics based model is developed to analyze the problem of structural instability in slender aerospace vehicles. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic pressure and the propulsive thrust of the vehicle. The model is one-dimensional, and it can be employed to idealized slender vehicles with complex shapes. Condition under which a flexible body with internal stress waves behaves like a perfect rigid body is derived. Two methods are developed for finite element discretization of the system: (1) A time-frequency Fourier spectral finite element method and (2) h-p finite element method. Numerical results using the above methods are presented in Part II of this paper. (C) 2010 Elsevier Ltd. All rights reserved.