952 resultados para DIESEL
Resumo:
Nonthermal plasma (NTP) treatment of exhaust gas is a promising technology for both nitrogen oxides (NOX) and particulate matter (PM) reduction by introducing plasma into the exhaust gases. This paper considers the effect of NTP on PM mass reduction, PM size distribution, and PM removal efficiency. The experiments are performed on real exhaust gases from a diesel engine. The NTP is generated by applying high-voltage pulses using a pulsed power supply across a dielectric barrier discharge (DBD) reactor. The effects of the applied high-voltage pulses up to 19.44 kVpp with repetition rate of 10 kHz are investigated. In this paper, it is shown that the PM removal and PM size distribution need to be considered both together, as it is possible to achieve high PM removal efficiency with undesirable increase in the number of small particles. Regarding these two important factors, in this paper, 17 kVpp voltage level is determined to be an optimum point for the given configuration. Moreover, particles deposition on the surface of the DBD reactor is found to be a significant phenomenon, which should be considered in all plasma PM removal tests.
Resumo:
This study investigated the preparation of methyl ester (Biodiesel) from peanut oil by transesterification method and its effect on DI diesel engine. Two parameters were measured during the engine operation: one is engine performance (brake thermal efficiency and brake specific fuel consumption), and the other is the exhaust emissions (NOx and CO). The result showed that, when compared with neat diesel fuel, the brake thermal efficiency of biodiesel blend was almost similar or a slight lower. However, brake specific fuel consumption (bsfc) was a little higher than neat diesel. CO was lower and NOx was little higher with biodiesel blend than that of diesel. The engine performance for B10 and B20 was very similar. At medium and high load conditions the engine emissions for B10 and B20 has no significant variation. Hence, B20 can safely be used in diesel engine without any significant penalty in engine performance and emissions.
Resumo:
This thesis represents a major step forward in understanding the link between the development of combustion related faults in diesel engines and the generation of acoustic emissions. The findings presented throughout the thesis provide a foundation so that future diesel engine monitoring systems are able to more effectively detect and monitor developing faults. In undertaking this research knowledge concerning engine function and relevant failure mechanisms was combined with different modelling methods to generate a framework that was used to effectively identify fault related activity within acoustic emissions recorded from different engines.
Resumo:
Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of respective molecules that constitutes the fuel. Previous studies demonstrated the relationship between organic fraction of PM and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analysed in more detail to explore the role different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact Time of Flight Aerosol Mass Spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.
Resumo:
The issue of particle emissions from diesel engines is still a matter of concern due its deleterious effects both on human health and environment(Ristovski et al., 2012). Recently, International Agency for Research on Cancer (IARC) inclusion of diesel engine exhaust particles as carcinogenic to human health added a new margin on it. Apart from the use of after treatment technology, biodiesel is also considered as potential way to reduce particle emission alongside with other emissions(Xue, Grift, & Hansen, 2011). Global biodiesel production is still reasonably small compared to its counterpart fossil diesel, but even this small amount comes from a wide variety of feed stocks. Contrary to fossil diesel, the important physicochemical properties of biodiesel vary among different feed stocks(Hoekman, Broch, Robbins, Ceniceros, & Natarajan, 2012).
Resumo:
A technique for analysing exhaust emission plumes from unmodified locomotives under real world conditions is described and applied to the task of characterizing plumes from railway trains servicing an Australian shipping port. The method utilizes the simultaneous measurement, downwind of the railway line, of the following pollutants; particle number, PM2.5 mass fraction, SO2, NOx and CO2, with the last of these being used as an indicator of fuel combustion. Emission factors are then derived, in terms of number of particles and mass of pollutant emitted per unit mass of fuel consumed. Particle number size distributions are also presented. The practical advantages of the method are discussed including the capacity to routinely collect emission factor data for passing trains and to thereby build up a comprehensive real world database for a wide range of pollutants. Samples from 56 train movements were collected, analyzed and presented. The quantitative results for emission factors are: EF(N)=(1.7±1)×1016 kg-1, EF(PM2.5)= (1.1±0.5) g·kg-1, EF(NOx)= (28±14) g·kg-1, and EF(SO2 )= (1.4±0.4) g·kg-1. The findings are compared with comparable previously published work. Statistically significant (p<α, α=0.05) correlations within the group of locomotives sampled were found between the emission factors for particle number and both SO2 and NOx.
Resumo:
In this paper, a framework for isolating unprecedented faults for an EGR valve system is presented. Using normal behavior data generated by a high fidelity engine simulation, the recently introduced Growing Structure Multiple Model System (GSMMS) is used to construct models of normal behavior for an EGR valve system and its various subsystems. Using the GSMMS models as a foundation, anomalous behavior of the entire system is then detected as statistically significant departures of the most recent modeling residuals from the modeling residuals during normal behavior. By reconnecting anomaly detectors to the constituent subsystems, the anomaly can be isolated without the need for prior training using faulty data. Furthermore, faults that were previously encountered (and modeled) are recognized using the same approach as the anomaly detectors.
Resumo:
In this paper, a recently introduced model-based method for precedent-free fault detection and isolation (FDI) is modified to deal with multiple input, multiple output (MIMO) systems and is applied to an automotive engine with exhaust gas recirculation (EGR) system. Using normal behavior data generated by a high fidelity engine simulation, the growing structure multiple model system (GSMMS) approach is used to construct dynamic models of normal behavior for the EGR system and its constituent subsystems. Using the GSMMS models as a foundation, anomalous behavior is detected whenever statistically significant departures of the most recent modeling residuals away from the modeling residuals displayed during normal behavior are observed. By reconnecting the anomaly detectors (ADs) to the constituent subsystems, EGR valve, cooler, and valve controller faults are isolated without the need for prior training using data corresponding to particular faulty system behaviors.
Resumo:
This thesis investigates condition monitoring (CM) of diesel engines using acoustic emission (AE) techniques. The AE signals recorded from a small size diesel engine are mixtures of multiple sources from multiple cylinders. Thus, it is difficult to interpret the information conveyed in the signals for CM purposes. This thesis develops a series of practical signal processing techniques to overcome this problem. Various experimental studies conducted to assess the CM capabilities of AE analysis for diesel engines. A series of modified signal processing techniques were proposed. These techniques showed promising results of capability for CM of multiple cylinders diesel engine using multiple AE sensors.
Resumo:
Due to rapidly diminishing international supplies of fossil fuels, such as petroleum and diesel, the cost of fuel is constantly increasing, leading to higher costs of living, as a result of the significant reliance of many industries on motor vehicles. Many technologies have been developed to replace part or all of a fossil fuel with bio-fuels. One of the dual fuel technologies is fumigation of ethanol in diesel engines, which injects ethanol into the intake air stream of the engine. The advantage of this is that it avoids any costly modification of the engine high pressure diesel injection system, while reducing the volume of diesel required and potentially increasing the power output and efficiency. This paper investigates the performance of a diesel engine, converted to implement ethanol fumigation. The project will use both existing experimental data, along with generating computer modeled results using the program AVL Boost. The data from both experiments and the numerical simulation indicate desirable results for the peak pressure and the indicated mean effective pressure (IMEP). Increase in ethanol substitution resulted in elevated combustion pressure and an increase in the IMEP, while the variation of ethanol injection location resulted in negligible change. These increases in cylinder pressure led to a higher work output and total efficiency in the engine as the ethanol substitution was increased. In comparing the numerical and experimental results, the simulation showed a slight elevation, due to the inaccuracies in the heat release models. Future work is required to improve the combustion model and investigate the effect of the variation of the location of ethanol injection.
Resumo:
Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.
Resumo:
In recent years fine and ultra fine particles emitted from internal combustion engines have attracted an increasing level of attention. This attention has arisen from epidemiological studies conducted by a number of research groups and pointing to the health effects resulting from inhalation of fine particles. Previous studies on the influence of fuel sulfur level on diesel vehicle emissions were mainly concentrated on particle mass emissions. This study aims at investigating the influence of the reduction of diesel fuel sulfur level on the emission and formation of nanoparticles
Resumo:
Exhaust emissions were monitored in real-time at the kerb of a busy busway used by a mix of diesel and CNG-powered transport buses. Particle number concentration in the size range 3 nm to 3 µm was measured with a TSI condensation particle counter (CPC 3025). Particle mass (PM2.5) was measured with a TSI Dustrak 8520. The CO2 emissions were measured with a fast response CO2 analyser (Sable CA-10A). All emission concentrations were recorded in real time at 1 sec resolution, together with the precise passage times of buses. The instantaneous ratio of particle number (or mass) to CO2 concentration, denoted Z, was used as a measure of the particle number (or mass) emission factor of each passing bus.