997 resultados para DIASTOLIC VOLUME
Resumo:
Introducción: La gran mayoría de las medidas de normalidad utilizadas para la interpretación de resonancia cardiaca son extrapoladas de las medidas de ecocardiografía. Los limitados registros de medidas de normalidad se encuentran ajustados en poblaciones extranjeras, no hay registros en latinoamericanos. Objetivo: Determinar las dimensiones cardiacas utilizando resonancia magnética en una población de personas sin antecedente médicos con repercusión cardiaca para lograr una muestra de valores que permitan ajustar las medidas de normalidad utilizadas por nuestro servicio. Materiales y métodos: se analizaron 45 sujetos sanos con edad comprendida entre los 21 y 45 años, las adquisiciones se realizaron utilizando un equipo de RM de 1,5 teslas, el análisis de las imágenes se realizó mediante el programa Cardiac Volume Vx. Se evaluaron múltiples parámetros morfofuncionales a través de análisis estadístico por medio del sistema SPSS versión 23. Resultados: Mediciones obtenidas de ventrículo izquierdo principales fueron volumen diastólico en mujeres de 62 ml +/- 7.1 y en hombres de 65 ml +/- 11.2 y fracción de eyección de 60 % +/- 5 en mujeres y de 62 % +/- 9 en hombres. En ventrículo derecho el volumen diastólico final se encontró 81.8 ml +/- 14.6 en mujeres y 100 ml +/- 24.8 en hombres y fracción de eyección de 53 % +/- 17 en mujeres y de 45 % +/- 12 en hombres. Volumen de fin de diástole de 50 +/- 12.7 ml en mujeres y de 49 ml +/- 19 ml en hombres y fracción de eyección de aurícula izquierda de 55 % +/- 0.08 en mujeres y de 50 % +/- 0.07 en hombres. Volumen de fin de diástole de 44.1 ml +/- 18.5 en mujeres y de 49.2 ml +/- 22.9 en hombres y fracción de eyección de aurícula derecha de 50 % +/- 11 en mujeres y de 45 % +/- 8 en hombres. Se obtuvieron otras medidas lineales y volumétricas adicionales de cavidades cardiacas y de grandes vasos supracardiacos. Conclusiones: se describen los valores de referencia de los parámetros morfofuncionales de las cavidades cardiacas y de vasos supracardiacos. El sexo fue tenido en cuenta como covariable relacionada con la modificación de los parámetros evaluados. Se sugieren variaciones en las medidas de cavidades cardiacas para la población estudiada relacionada con aclimatación crónica a la altitud de la ciudad de Bogotá.
Resumo:
Although angiotensin II-induced venoconstriction has been demonstrated in the rat vena cava and femoral vein, the angiotensin II receptor subtypes (AT(1) or AT(2)) that mediate this phenomenon have not been precisely characterized. Therefore, the present study aimed to characterize the pharmacological receptors involved in the angiotensin II-induced constriction of rat venae cavae and femoral veins, as well as the opposing effects exerted by locally produced prostanoids and NO upon induction of these vasomotor responses. The obtained results suggest that both AT(1) and AT(2) angiotensin II receptors are expressed in both veins. Angiotensin II concentration-response curves were shifted toward the right by losartan but not by PD 123319 in both the vena cava and femoral vein. Moreover, it was observed that both 10(-5) M indomethacin and 10(-4) M L-NAME improve the angiotensin II responses in the vena cava and femoral vein. In conclusion, in the rat vena cava and femoral vein, angiotensin II stimulates AT(1) but not AT(2) to induce venoconstriction, which is blunted by vasodilator prostanoids and NO. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Introdução: Sabe-se que a cirurgia de revascularização miocárdica está associada com alteração dos mediadores inflamatórios e da função imunitária, com ativação precoce dos linfócitos que poderia ser responsável pela linfopenia e diminuição da atividade dos linfócitos no pós-operatório. A elevação enzimática está diminuída na cirurgia sem circulação extracorpórea mas este achado não está associado a melhor evolução clínica. Nesta tese, testamos a hipótese de que a cirurgia de revascularização miocárdica realizada sem circulação extracorpórea pode levar a uma ativação linfocitária de menor intensidade do que a cirurgia com circulação extracorpórea. Métodos: A resposta da ativação linfocitária foi estudada durante o período trans e pósoperatório em 28 pacientes randomizados para cirurgia de coronária sem circulação extracorpórea (n=13) ou cirurgia convencional com circulação extracorpórea (n=15), utilizando citometria de fluxo para determinar a expressão de CD25, CD26, CD69 e DR em linfócitos T (CD3+) e B (CD19+), em sangue periférico. No mesmo período foram realizadas dosagens de troponina I por quimioluminescência e realizado ecocardiograma uni-bidimensional antes e após a cirurgia. Resultados: Não houve diferença estatisticamente significativa para nenhum dos marcadores de ativação linfocitária quando comparados os grupos operados sem ou com circulação extracorpórea (ANOVA bicaudal para medidas repetidas, p>0,05). Considerando todos os pacientes estudados, houve uma elevação da expressão proporcional de CD25 e CD69 em linfócitos T (CD3+) e B (CD19+). Nos linfócitos T, o valor proporcional médio mais elevado (+ EP) de CD69 foi observado 6 horas após terem sido completadas as anastomoses (+75 + 476%) e CD25 teve uma elevação mais gradual, com o pico de seu valor médio (+48 + 24 %) ocorrendo 24 horas após a revascularização. Em linfócitos B, o pico do valor médio de CD69 (+104 + 269 %) ocorreu também após o fim das anastomoses. CD25 teve seu pico de valor médio (+150 + 773 %) 112 horas após a revascularização e seu último valor medido ainda estava elevado. A expressão de CD26 em linfócitos T teve um aparente declínio nos seus valores proporcionais médios (-42 + 32 %) 12 horas após o fim das anastomoses. Não houve diferença significativa na elevação enzimática entre os dois grupos (teste estatístico >0,05). No ecocardiograma, o grupo operado sem circulação extracorpórea apresentou diminuição do volume diastólico (p=0,001) de da fração de ejeção (P=0,012), enquanto no grupo com circulação extracorpórea, diminuíram os volumes diastólico (p=0,006) e sistólico (p=0,01). Conclusões: 1) Comparando a cirurgia de revascularização miocárdica com circulação extracorpórea, a cirurgia sem circulação extracorpórea não reduz a ativação dos linfócitos. 2) A cirurgia de revascularização miocárdica produz uma ativação precoce dos linfócitos, com aumento da expressão de CD69 e CD25 em linfócitos T (CD3+) e B (CD19+), em sangue periférico. A elevação precoce de CD69, e elevação mais tardia de CD25, pode indicar duas partes de uma seqüência de ativação linfocitária. 3) O comportamento das enzimas cardíacas e dos achados ecocardiográficos não sugere benefício da cirurgia sem circulação extracorpórea sobre o dano miocárdio.
Resumo:
There is no data about cardiac measurements em Brazilians obtained by CMR. This a muldisciplinary study with the objective of obtaining measurements of the left ventricle (LV) and right ventricle (RV) diastolic diameter (Dd), systolic diameter (Ds), diastolic volume (Dv), systolic volume (Sv), ejection fraction (EF) and myocardial mass in Brazilians. One hundred and seven (54 men and 53 women, mean age of 43.4 ± 13.1 years) asymptomatic individuals without heart disease were submitted to cardiac magnetic resonance (cMR) studies using steady state free precession technique. The means and standard deviations of the parameters of the LV and RV were respectively: LVDD = 4,8 ± 0,5 cm; LVSD = 3,0±0,6 cm; LVDV = 128,4±29,6 ml; LVSV = 45,2±16,6 ml; LVEF = 65,5±6,3%; LV mass = 95,2±30,8.1 g; RVDD = 3,9±1,3 cm; RVSD = 2,5±0,5 cm; RVDV = 126,5±30,7 ml; RVSV = 53.6±18,4 ml; RVEF = 58.3±8,0.0% and RV mass = 26,1±6,1 g. The masses and volumes were significantly higher in men, except for the LVSV. The RV EF was significantly higher in women. There was inverse correlation between RV systolic volume and with age, being more significant in men. This study describes for the first time benchmarks for cardiac measurements obtained by CMR among asymptomatic Brazilians individuals without heart disease and demonstrated differences according to sex and age
Resumo:
The effects of adrenergic stimulation on mean circulatory filling pressure (MCFP), central venous pressure (P-CV) and stroke volume (Vs), as well as the effects of altered MCFP through changes of blood volume were investigated in rattlesnakes (Crotalus durissus). MCFP is an estimate of the upstream pressure driving blood towards the heart and is determined by blood volume and the activity of the smooth muscle cells in the veins (venous tone). MCFP can be determined as the plateau in P-CV during a total occlusion of blood flow from the heart.Vs decreased significantly when MCFP was lowered by reducing blood volume in anaesthetised snakes, whereas increased MCFP through infusion of blood (up to 3 ml kg(-1)) only led to a small rise in Vs. Thus, it seems that end-diastolic volume is not affected by an elevated MCFP in rattlesnakes. To investigate adrenergic regulation on venous tone, adrenaline as well as phenylephrine and isoproterenol (alpha- and beta-adrenergic agonists, respectively) were infused as bolus injections (2 and 10 mu g kg(-1)). Adrenaline and phenylephrine caused large increases in MCFP and P-CV, whereas isoproterenol decreased both parameters. This was also the case in fully recovered snakes. Therefore, adrenaline affects venous tone through both alpha- and beta-adrenergic receptors, but the alpha-adrenergic receptor dominates at the dosages used in the present study. Injection of the nitric oxide donor SNP caused a significant decrease in P-CV and MCFP. Thus, nitric oxide seems to affect venous tone.
Resumo:
OBJECTIVE: To evaluate the effects of losartan on ventricular remodeling and on survival after myocardial infarction in rats. METHODS: After surgical occlusion of left coronary artery, 84 surviving male Wistar rats were divided into two groups: LO treated with losartan (20mg/kg/day, n=33) and NT (n=51), without medication. After 3 months, we analyzed mortality; ventricular to body mass ratio (VM /BM); myocardial hydroxyproline concentration (HOP); isovolumetric pressure, +dp/dt, -dp/dt, and diastolic volume/left ventricle mass ratio (VO/LV). RESULTS: Mortality was: LO = 22%, and NT = 47% (p<0.05). Ventricular mass,(VM/BM, mg/g) was 4.14 ± 0.76 and 3.54±0.48, in the NT and LO groups, respectively (p<0.05). HOP (median) was 4.92 upsilong/mg in the LO and 5.54 upsilong/g in the NT group (p>0.05). The V0/LV values (median) were 0.24 mL/g in group LO and 0.31 mL/g in group NT (p<0.05) compared to NT group. There were no differences between the groups for +dp/dt and -dp/dt parameters. CONCLUSION: 1- The use of losartan myocardial infarction causes an attenuation of ventricular remodeling, bringing about an increased survival, an attenuation of ventricular hypertrophy and dilation, and an improvement of the isovolumetric pressure; 2- the treatment does not modify the myocardial collagen concentration.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background. Acute normovolemic hemodilution (ANH) is an alternative to blood transfusion in surgeries involving blood loss. This experimental study was designed to evaluate whether pulse pressure variation (PPV) would be an adequate tool for monitoring changes in preload during ANH, as assessed by transesophageal echocardiography. Methods. Twenty-one anesthetized and mechanically ventilated pigs were randomized into three groups: CTL (control), HES (hemodilution with 6% hydroxyethyl starch at a 1:1 ratio) or NS (hemodilution with saline 0.9% at a 3:1 ratio). Hemodilution was performed in animals of groups NS and HES in two stages, with target hematocrits 22% and 15%, achieved at 30-minute intervals. After two hours, 50% of the blood volume withdrawn was transfused and animals were monitored for another hour. Statistical analysis was based on ANOVA for repeated measures followed by multiple comparison test (P<0.05). Pearson's correlations were performed between changes in left ventricular end-diastolic volume (LVEDV) and PPV, central venous pressure (CVP) and pulmonary artery occlusion pressure (PAOP). Results. Group NS received a significantly greater amount of fluids during ANH (NS, 900 +/- 168 mL vs. HES, 200 +/- 50 mL, P<0.05) and presented greater urine output (NS, 2643 +/- 1097mL vs. HES, 641 +/- 338mL, P<0.001). Significant decreases in LVEDV were observed in group NS from completion of ANH until transfusion. In group HES, only increases in LVEDV were observed, at the end of ANH and at transfusion. Such changes in LVEDV (Delta LVEDV) were better reflected by changes in PPV (Delta PPV, R=-0.62) than changes in CVP (Delta CVP R=0.32) or in PAOP (Delta PAOP, R=0.42, respectively). Conclusion. Changes in preload during ANH were detected by changes in PPV. Delta PPV was superior to Delta PAOP and Delta CVP to this end. (Minerva Anestesiol 2012;78:426-33)
Resumo:
Myocardial dysfunction appears in 25% of patients with severe sepsis and in 50% of patients with septic shock, even in the presence of hyper dynamic states. It is characterized by a reduction in left ventricle ejection fraction, that reverts at the seventh to tenth day of evolution. Right ventricular dysfunction and diastolic left ventricular dysfunction can also appear. There is no consensus if an increase in end diastolic volume is part of the syndrome. High troponin or brain natriuretic peptide levels are associated with myocardial dysfunction and a higher mortality. The pathogenesis of myocardial dysfunction is related to micro and macro circulatory changes, inflammatory response, oxidative stress, intracellular calcium management disturbances, metabolic changes, autonomic dysfunction, activation of apoptosis, mitochondrial abnormalities and a derangement in catecholaminergic stimulation. Since there is no specific treatment for myocardial dysfunction, its management requires an adequate multi systemic support to maintain perfusion pressures and systemic flows sufficient for the regional and global demands.
Resumo:
OBJECTIVE: Current pulsatile ventricular assist devices operate asynchronous with the left ventricle in fixed-rate or fill-to-empty modes because electrocardiogram-triggered modes have been abandoned. We hypothesize that varying the ejection delay in the synchronized mode yields more precise control of hemodynamics and left ventricular loading. This allows for a refined management that may be clinically beneficial. METHODS: Eight sheep received a Thoratec paracorporeal ventricular assist device (Thoratec Corp, Pleasanton, Calif) via ventriculo-aortic cannulation. Left ventricular pressure and volume, aortic pressure, pulmonary flow, pump chamber pressure, and pump inflow and outflow were recorded. The pump was driven by a clinical pneumatic drive unit (Medos Medizintechnik AG, Stolberg, Germany) synchronously with the native R-wave. The start of pump ejection was delayed between 0% and 100% of the cardiac period in 10% increments. For each of these delays, hemodynamic variables were compared with baseline data using paired t tests. RESULTS: The location of the minimum of stroke work was observed at a delay of 10% (soon after aortic valve opening), resulting in a median of 43% reduction in stroke work compared with baseline. Maximum stroke work occurred at a median delay of 70% with a median stroke work increase of 11% above baseline. Left ventricular volume unloading expressed by end-diastolic volume was most pronounced for copulsation (delay 0%). CONCLUSIONS: The timing of pump ejection in synchronized mode yields control over left ventricular energetics and can be a method to achieve gradual reloading of a recoverable left ventricle. The traditionally suggested counterpulsation is not optimal in ventriculo-aortic cannulation when maximum unloading is desired.
Resumo:
The rodent model of myocardial infarction (MI) is extensively used in heart failure studies. However, long-term follow-up of echocardiographic left ventricular (LV) function parameters such as the myocardial performance index (MPI) and its ratio with the fractional shortening (LVFS/MPI) has not been validated in conjunction with invasive indexes, such as those derived from the conductance catheter (CC). Sprague-Dawley rats with left anterior descending coronary artery ligation (MI group, n = 9) were compared with a sham-operated control group (n = 10) without MI. Transthoracic echocardiography (TTE) was performed every 2 wk over an 8-wk period, after which classic TTE parameters, especially MPI and LVFS/MPI, were compared with invasive indexes obtained by using a CC. Serial TTE data showed significant alterations in the majority of the noninvasive functional and structural parameters (classic and novel) studied in the presence of MI. Both MPI and LVFS/MPI significantly (P < 0.05 for all reported values) correlated with body weight (r = -0.58 and 0.76 for MPI and LVFS/MPI, respectively), preload recruitable stroke work (r = -0.61 and 0.63), LV end-diastolic pressure (LVEDP) (r = 0.82 and -0.80), end-diastolic volume (r = 0.61 and -0.58), and end-systolic volume (r = 0.46 and -0.48). Forward stepwise linear regression analysis revealed that, of all variables tested, LVEDP was the only independent determinant of MPI (r = 0.84) and LVFS/MPI (r = 0.83). We conclude that MPI and LVFS/MPI correlate strongly and better than the classic noninvasive TTE parameters with established, invasively assessed indexes of contractility, preload, and volumetry. These findings support the use of these two new noninvasive indexes for long-term analysis of the post-MI LV remodeling.
Resumo:
BACKGROUND: Resistance training (RT) is safe and practicable in low-risk populations with coronary artery disease. In patients with left ventricular (LV) dysfunction after an acute ischaemic event, few data exist about the impact of RT on LV remodelling. METHODS: In this prospective, randomized, controlled study, 38 patients, after a first myocardial infarction and a maximum ejection fraction (EF) of 45%, were assigned either to combined endurance training (ET)/RT (n=17; 15 men; 54.7+/-9.4 years and EF: 40.3+/-4.5%) or to ET alone (n=21; 17 men; 57.0+/-9.6 years and EF: 41.9+/-4.9%) for 12 weeks. ET was effectuated at an intensity of 70-85% of peak heart rate; RT, between 40 and 60% of the one-repetition maximum. LV remodelling was assessed by MRI. RESULTS: No statistically significant differences between the groups in the changes of end-diastolic volume (P=0.914), LV mass (P=0.885) and EF (P=0.763) were observed. Over 1 year, the end-diastolic volume increased from 206+/-41 to 210+/-48 ml (P=0.379) vs. 183+/-44 to 186+/-52 ml (P=0.586); LV mass from 149+/-28 to 155+/-31 g (P=0.408) vs. 144+/-36 to 149+/-42 g (P=0.227) and EF from 49.1+/-12.3 to 49.3+/-12.0% (P=0.959) vs. 51.5+/-13.1 to 54.1% (P=0.463), in the ET/RT and ET groups, respectively. Peak VO2 and muscle strength increased significantly in both groups, but no difference between the groups was noticed. CONCLUSION: RT with an intensity of up to 60% of the one-repetition maximum, after an acute myocardial infarction, does not lead to a more pronounced LV dilatation than ET alone. A combined ET/RT, or ET alone, for 3 months can both increase the peak VO2 and muscle strength significantly.
Resumo:
We appreciate the comments and concerns expressed by Arakawa and colleagues regarding our article, titled “Pulsatile control of rotary blood pumps: Does the modulation waveform matter?”1 Unfortunately, we have to disagree with Arakawa and colleagues. As is obvious from the title of our article, it investigates the effect of different waveforms on the heart–device interaction. In contrast to the authors' claim, this is the first article in the literature that uses basic waveforms (sine, triangle, saw tooth, and rectangular) with different phase shifts to examines their impact on left ventricular unloading. The previous publications2, 3 and 4 just varied the pump speed during systole and diastole, which was first reported by Bearnson and associates5 in 1996, and studied its effect on aortic pressure, coronary flow, and end-diastolic volume. We should mention that dp/dtmax is a load-sensitive parameter of contractility and not representative for the degree of unloading. Moreover, none of the aforementioned reports has studied mechanical unloading and in particular the stroke work of the left ventricle. Our method is unique because we do not just alternate between high and low speed but have accurate control of the waveform because of the direct drive system of Levitronix Technologies LLC (Waltham, Mass) and a custom-developed pump controller. Without referring, Arakawa and associates state “several previous studies have already reported the coronary flow diminishes as the left ventricular assist device support increases.” It should be noted that all the waveforms used in our study have 2000 rpm average value with 1000 rpm amplitude, which is not an excessive speed for the CentriMag rotary pump (Levitronix) to collapse the ventricle and diminish the coronary flow. We agree with Arakawa and coworkers that there is a need for a heart failure model to come to more relevant results with respect to clinical expectations. However, we have explored many existing models, including species and breeds that have a native proneness to cardiomyopathy, but all of them differ from the genetic presentation in humans. We certainly do not believe that the use of microembolization, in which the coronary circulation is impaired by the injection of microspheres, would form a good model from which to draw conclusions about coronary flow change under different loading conditions. A model would be needed in which either an infarct is created to mimic ischemic heart failure or the coronary circulation remains untouched to simulate, for instance, dilated cardiomyopathy. Furthermore, in discussion we clearly mention that “lack of heart failure is a major limitation of our study.” We also believe that unloading is not the only factor of the cardiac functional recovery, and an excessive unloading of the left ventricle might lead to cardiac tissue atrophy. Therefore, in our article we mention that control of the level of cardiac unloading by assist devices has been suggested as a mechanical tool to promote recovery, and more studies are required to find better strategies for the speed modulation of rotary pumps and to achieve an optimal heart load control to enhance myocardial recovery. Finally, there are many publications about pulsing rotary blood pumps and it was impossible to include them all. We preferred to reference some of the earlier basic works such as an original research by Bearnson and coworkers5 and another article published by our group,6 which is more relevant.