945 resultados para DECISION-TREE INDUCTION
Resumo:
Usually, data mining projects that are based on decision trees for classifying test cases will use the probabilities provided by these decision trees for ranking classified test cases. We have a need for a better method for ranking test cases that have already been classified by a binary decision tree because these probabilities are not always accurate and reliable enough. A reason for this is that the probability estimates computed by existing decision tree algorithms are always the same for all the different cases in a particular leaf of the decision tree. This is only one reason why the probability estimates given by decision tree algorithms can not be used as an accurate means of deciding if a test case has been correctly classified. Isabelle Alvarez has proposed a new method that could be used to rank the test cases that were classified by a binary decision tree [Alvarez, 2004]. In this paper we will give the results of a comparison of different ranking methods that are based on the probability estimate, the sensitivity of a particular case or both.
Resumo:
This paper presents new insights and novel algorithms for strategy selection in sequential decision making with partially ordered preferences; that is, where some strategies may be incomparable with respect to expected utility. We assume that incomparability amongst strategies is caused by indeterminacy/imprecision in probability values. We investigate six criteria for consequentialist strategy selection: Gamma-Maximin, Gamma-Maximax, Gamma-Maximix, Interval Dominance, Maximality and E-admissibility. We focus on the popular decision tree and influence diagram representations. Algorithms resort to linear/multilinear programming; we describe implementation and experiments. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Examples from the Murray-Darling basin in Australia are used to illustrate different methods of disaggregation of reconnaissance-scale maps. One approach for disaggregation revolves around the de-convolution of the soil-landscape paradigm elaborated during a soil survey. The descriptions of soil ma units and block diagrams in a soil survey report detail soil-landscape relationships or soil toposequences that can be used to disaggregate map units into component landscape elements. Toposequences can be visualised on a computer by combining soil maps with digital elevation data. Expert knowledge or statistics can be used to implement the disaggregation. Use of a restructuring element and k-means clustering are illustrated. Another approach to disaggregation uses training areas to develop rules to extrapolate detailed mapping into other, larger areas where detailed mapping is unavailable. A two-level decision tree example is presented. At one level, the decision tree method is used to capture mapping rules from the training area; at another level, it is used to define the domain over which those rules can be extrapolated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
INTRODUCTION: Hip fractures are responsible for excessive mortality, decreasing the 5-year survival rate by about 20%. From an economic perspective, they represent a major source of expense, with direct costs in hospitalization, rehabilitation, and institutionalization. The incidence rate sharply increases after the age of 70, but it can be reduced in women aged 70-80 years by therapeutic interventions. Recent analyses suggest that the most efficient strategy is to implement such interventions in women at the age of 70 years. As several guidelines recommend bone mineral density (BMD) screening of postmenopausal women with clinical risk factors, our objective was to assess the cost-effectiveness of two screening strategies applied to elderly women aged 70 years and older. METHODS: A cost-effectiveness analysis was performed using decision-tree analysis and a Markov model. Two alternative strategies, one measuring BMD of all women, and one measuring BMD only of those having at least one risk factor, were compared with the reference strategy "no screening". Cost-effectiveness ratios were measured as cost per year gained without hip fracture. Most probabilities were based on data observed in EPIDOS, SEMOF and OFELY cohorts. RESULTS: In this model, which is mostly based on observed data, the strategy "screen all" was more cost effective than "screen women at risk." For one woman screened at the age of 70 and followed for 10 years, the incremental (additional) cost-effectiveness ratio of these two strategies compared with the reference was 4,235 euros and 8,290 euros, respectively. CONCLUSION: The results of this model, under the assumptions described in the paper, suggest that in women aged 70-80 years, screening all women with dual-energy X-ray absorptiometry (DXA) would be more effective than no screening or screening only women with at least one risk factor. Cost-effectiveness studies based on decision-analysis trees maybe useful tools for helping decision makers, and further models based on different assumptions should be performed to improve the level of evidence on cost-effectiveness ratios of the usual screening strategies for osteoporosis.
Resumo:
In order to broaden our knowledge and understanding of the decision steps in the criminal investigation process, we started by evaluating the decision to analyse a trace and the factors involved in this decision step. This decision step is embedded in the complete criminal investigation process, involving multiple decision and triaging steps. Considering robbery cases occurring in a geographic region during a 2-year-period, we have studied the factors influencing the decision to submit biological traces, directly sampled on the scene of the robbery or on collected objects, for analysis. The factors were categorised into five knowledge dimensions: strategic, immediate, physical, criminal and utility and decision tree analysis was carried out. Factors in each category played a role in the decision to analyse a biological trace. Interestingly, factors involving information available prior to the analysis are of importance, such as the fact that a positive result (a profile suitable for comparison) is already available in the case, or that a suspect has been identified through traditional police work before analysis. One factor that was taken into account, but was not significant, is the matrix of the trace. Hence, the decision to analyse a trace is not influenced by this variable. The decision to analyse a trace first is very complex and many of the tested variables were taken into account. The decisions are often made on a case-by-case basis.
Resumo:
Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting.
Resumo:
The induction of classification rules from previously unseen examples is one of the most important data mining tasks in science as well as commercial applications. In order to reduce the influence of noise in the data, ensemble learners are often applied. However, most ensemble learners are based on decision tree classifiers which are affected by noise. The Random Prism classifier has recently been proposed as an alternative to the popular Random Forests classifier, which is based on decision trees. Random Prism is based on the Prism family of algorithms, which is more robust to noise. However, like most ensemble classification approaches, Random Prism also does not scale well on large training data. This paper presents a thorough discussion of Random Prism and a recently proposed parallel version of it called Parallel Random Prism. Parallel Random Prism is based on the MapReduce programming paradigm. The paper provides, for the first time, novel theoretical analysis of the proposed technique and in-depth experimental study that show that Parallel Random Prism scales well on a large number of training examples, a large number of data features and a large number of processors. Expressiveness of decision rules that our technique produces makes it a natural choice for Big Data applications where informed decision making increases the user’s trust in the system.
Resumo:
Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output, helping the end-user to get more confidence in the prediction and providing the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses previously formed. Moreover, model trees present an acceptable level of predictive performance in comparison to most techniques used for solving regression problems. Since generating the optimal model tree is an NP-Complete problem, traditional model tree induction algorithms make use of a greedy top-down divide-and-conquer strategy, which may not converge to the global optimal solution. In this paper, we propose a novel algorithm based on the use of the evolutionary algorithms paradigm as an alternate heuristic to generate model trees in order to improve the convergence to globally near-optimal solutions. We call our new approach evolutionary model tree induction (E-Motion). We test its predictive performance using public UCI data sets, and we compare the results to traditional greedy regression/model trees induction algorithms, as well as to other evolutionary approaches. Results show that our method presents a good trade-off between predictive performance and model comprehensibility, which may be crucial in many machine learning applications. (C) 2010 Elsevier Inc. All rights reserved.
Predictive models for chronic renal disease using decision trees, naïve bayes and case-based methods
Resumo:
Data mining can be used in healthcare industry to “mine” clinical data to discover hidden information for intelligent and affective decision making. Discovery of hidden patterns and relationships often goes intact, yet advanced data mining techniques can be helpful as remedy to this scenario. This thesis mainly deals with Intelligent Prediction of Chronic Renal Disease (IPCRD). Data covers blood, urine test, and external symptoms applied to predict chronic renal disease. Data from the database is initially transformed to Weka (3.6) and Chi-Square method is used for features section. After normalizing data, three classifiers were applied and efficiency of output is evaluated. Mainly, three classifiers are analyzed: Decision Tree, Naïve Bayes, K-Nearest Neighbour algorithm. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. Efficiency of Decision Tree and KNN was almost same but Naïve Bayes proved a comparative edge over others. Further sensitivity and specificity tests are used as statistical measures to examine the performance of a binary classification. Sensitivity (also called recall rate in some fields) measures the proportion of actual positives which are correctly identified while Specificity measures the proportion of negatives which are correctly identified. CRISP-DM methodology is applied to build the mining models. It consists of six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.
Resumo:
Foliar diagnosis is a method for assessing the nutritional status of agricultural crops, which helps in the understanding of soil fertility and rationalized application of fertilizers taking into account economic and environmental criteria. The study aimed to use the landrelief as criteria to assist in interpreting the spatial variability of nutrient content of the citrus leaf. The leaves were collected at regular intervals of 50 m, totaling 332 sampling points. Data were analyzed by descriptive statistics, geostatistics and induction of decision tree. With the aid of digital elevation model (MDE) and the profile planaltimetric, the area was divided into three different landrelief and sub-strands. The highest values for nutrients from the leaves of citrus were observed at the top (concave area) segments on a half-slope and lower slope. The nutrients from the citrus leaves showed high values of correlation (above 0.5) with the altitude of the study area. The technique of geostatistics and the induction of decision tree show that the relief is the variable with the greatest potential to interpret the maps of spatial variability of nutrients from the citrus leaves.
Resumo:
This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.
Resumo:
We are investigating the combination of wavelets and decision trees to detect ships and other maritime surveillance targets from medium resolution SAR images. Wavelets have inherent advantages to extract image descriptors while decision trees are able to handle different data sources. In addition, our work aims to consider oceanic features such as ship wakes and ocean spills. In this incipient work, Haar and Cohen-Daubechies-Feauveau 9/7 wavelets obtain detailed descriptors from targets and ocean features and are inserted with other statistical parameters and wavelets into an oblique decision tree. © 2011 Springer-Verlag.
Resumo:
As técnicas utilizadas para avaliação da segurança estática em sistemas elétricos de potência dependem da execução de grande número de casos de fluxo de carga para diversas topologias e condições operacionais do sistema. Em ambientes de operação de tempo real, esta prática é de difícil realização, principalmente em sistemas de grande porte onde a execução de todos os casos de fluxo de carga que são necessários, exige elevado tempo e esforço computacional mesmo para os recursos atuais disponíveis. Técnicas de mineração de dados como árvore de decisão estão sendo utilizadas nos últimos anos e tem alcançado bons resultados nas aplicações de avaliação da segurança estática e dinâmica de sistemas elétricos de potência. Este trabalho apresenta uma metodologia para avaliação da segurança estática em tempo real de sistemas elétricos de potência utilizando árvore de decisão, onde a partir de simulações off-line de fluxo de carga, executadas via software Anarede (CEPEL), foi gerada uma extensa base de dados rotulada relacionada ao estado do sistema, para diversas condições operacionais. Esta base de dados foi utilizada para indução das árvores de decisão, fornecendo um modelo de predição rápida e precisa que classifica o estado do sistema (seguro ou inseguro) para aplicação em tempo real. Esta metodologia reduz o uso de computadores no ambiente on-line, uma vez que o processamento das árvores de decisão exigem apenas a verificação de algumas instruções lógicas do tipo if-then, de um número reduzido de testes numéricos nos nós binários para definição do valor do atributo que satisfaz as regras, pois estes testes são realizados em quantidade igual ao número de níveis hierárquicos da árvore de decisão, o que normalmente é reduzido. Com este processamento computacional simples, a tarefa de avaliação da segurança estática poderá ser executada em uma fração do tempo necessário para a realização pelos métodos tradicionais mais rápidos. Para validação da metodologia, foi realizado um estudo de caso baseado em um sistema elétrico real, onde para cada contingência classificada como inseguro, uma ação de controle corretivo é executada, a partir da informação da árvore de decisão sobre o atributo crítico que mais afeta a segurança. Os resultados mostraram ser a metodologia uma importante ferramenta para avaliação da segurança estática em tempo real para uso em um centro de operação do sistema.
Resumo:
The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.