913 resultados para Cytotoxicity, Fibroblasts, Macrophage, PHEMA Hydrogel, RAFT Polymerization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1-phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the M-n was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 degrees C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (< 1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition-fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain-transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a poly-mer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlled polymerization of 2-chloro-1,3-butadiene using reversible addition–fragmentation chain transfer (RAFT) polymerization has been demonstrated for the first time. 2-Chloro-1,3-butadiene, more commonly known as chloroprene, has significant industrial relevance as a crosslinked rubber, with uses ranging from adhesives to integral automotive components. However, problems surrounding the inherent toxicity of the lifecycle of the thiourea-vulcanized rubber have led to the need for control over the synthesis of poly(2-chloro-1,3-butadiene). To this end, four chain transfer agents in two different solvents have been trialed and the kinetics are discussed. 2-Cyano-2-propylbenzodithioate (CPD) is shown to polymerize 2-chloro-1,3-butadiene in THF, using AIBN as an initiator, with complete control over the target molecular weight, producing polymers with low polydispersities (Mw/Mn < 1.25 in all cases).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(styrene)-block-poly(ethylene oxide) copolymers synthesized via the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and hetero Diels–Alder (HDA) cycloaddition can be cleaved in the solid state by a retro-HDA reaction occurring at 90 °C. Nanoporous films can be prepared from these polymers using a simple heating and washing procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce the design of a thermoresponsive nanoparticle via sacrificial micelle formation based on supramolecular host–guest chemistry. Reversible addition–fragmentation chain transfer (RAFT) polymerization was employed to synthesize well-defined polymer blocks of poly(N,N-dimethylacrylamide) (poly(DMAAm)) (Mn,SEC = 10 700 g mol–1, Đ = 1.3) and poly(N-isopropylacrylamide) (poly(NiPAAm)) (Mn,SEC = 39 700 g mol–1, Đ = 1.2), carrying supramolecular recognition units at the chain termini. Further, 2-methoxy-6-methylbenzaldehyde moieties (photoenols, PE) were statistically incorporated into the backbone of the poly(NiPAAm) block as photoactive cross-linking units. Host–guest interactions of adamantane (Ada) (at the terminus of the poly(NiPAAm/PE) chain) and β-cyclodextrin (CD) (attached to the poly(DMAAm chain end) result in a supramolecular diblock copolymer. In aqueous solution, the diblock copolymer undergoes micellization when heated above the lower critical solution temperature (LCST) of the thermoresponsive poly(NiPAAm/PE) chain, forming the core of the micelle. Via the addition of a 4-arm maleimide cross-linker and irradiation with UV light, the micelle is cross-linked in its core via the photoinduced Diels–Alder reaction of maleimide and PE units. The adamantyl–cyclodextrin linkage is subsequently cleaved by the destruction of the β-CD, affording narrowly distributed thermoresponsive nanoparticles with a trigger temperature close to 30 °C. Polymer chain analysis was performed via size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and dynamic light scattering (DLS). The size and thermoresponsive behavior of the micelles and nanoparticles were investigated via DLS as well as atomic force microscopy (AFM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer protected gold nanoparticles have successfully been synthesized by both "grafting-from" and "grafting-to" techniques. The synthesis methods of the gold particles were systematically studied. Two chemically different homopolymers were used to protect gold particles: thermo-responsive poly(N-isopropylacrylamide), PNIPAM, and polystyrene, PS. Both polymers were synthesized by using a controlled/living radical polymerization process, reversible addition-fragmentation chain transfer (RAFT) polymerization, to obtain monodisperse polymers of various molar masses and carrying dithiobenzoate end groups. Hence, particles protected either with PNIPAM, PNIPAM-AuNPs, or with a mixture of two polymers, PNIPAM/PS-AuNPs (i.e., amphiphilic gold nanoparticles), were prepared. The particles contain monodisperse polymer shells, though the cores are somewhat polydisperse. Aqueous PNIPAM-AuNPs prepared using a "grafting-from" technique, show thermo-responsive properties derived from the tethered PNIPAM chains. For PNIPAM-AuNPs prepared using a "grafting-to" technique, two-phase transitions of PNIPAM were observed in the microcalorimetric studies of the aqueous solutions. The first transition with a sharp and narrow endothermic peak occurs at lower temperature, and the second one with a broader peak at higher temperature. In the first transition PNIPAM segments show much higher cooperativity than in the second one. The observations are tentatively rationalized by assuming that the PNIPAM brush can be subdivided into two zones, an inner and an outer one. In the inner zone, the PNIPAM segments are close to the gold surface, densely packed, less hydrated, and undergo the first transition. In the outer zone, on the other hand, the PNIPAM segments are looser and more hydrated, adopt a restricted random coil conformation, and show a phase transition, which is dependent on both particle concentration and the chemical nature of the end groups of the PNIPAM chains. Monolayers of the amphiphilic gold nanoparticles at the air-water interface show several characteristic regions upon compression in a Langmuir trough at room temperature. These can be attributed to the polymer conformational transitions from a pancake to a brush. Also, the compression isotherms show temperature dependence due to the thermo-responsive properties of the tethered PNIPAM chains. The films were successfully deposited on substrates by Langmuir-Blodgett technique. The sessile drop contact angle measurements conducted on both sides of the monolayer deposited at room temperature reveal two slightly different contact angles, that may indicate phase separation between the tethered PNIPAM and PS chains on the gold core. The optical properties of amphiphilic gold nanoparticles were studied both in situ at the air-water interface and on the deposited films. The in situ SPR band of the monolayer shows a blue shift with compression, while a red shift with the deposition cycle occurs in the deposited films. The blue shift is compression-induced and closely related to the conformational change of the tethered PNIPAM chains, which may cause a decrease in the polarity of the local environment of the gold cores. The red shift in the deposited films is due to a weak interparticle coupling between adjacent particles. Temperature effects on the SPR band in both cases were also investigated. In the in situ case, at a constant surface pressure, an increase in temperature leads to a red shift in the SPR, likely due to the shrinking of the tethered PNIPAM chains, as well as to a slight decrease of the distance between the adjacent particles resulting in an increase in the interparticle coupling. However, in the case of the deposited films, the SPR band red-shifts with the deposition cycles more at a high temperature than at a low temperature. This is because the compressibility of the polymer coated gold nanoparticles at a high temperature leads to a smaller interparticle distance, resulting in an increase of the interparticle coupling in the deposited multilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Click" chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the "metal-free" cross-linking of PMMA-precursor chains prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization containing beta-ketoester functional groups. Intramolecular collapse was performed by the one-pot reaction of beta-ketoester moieties with alkyl diamines in tetrahydrofurane at r.t. (i.e., by enamine formation). The collapsing process was followed by size exclusion chromatography and by nuclear magnetic resonance spectroscopy. The size of the resulting PMMA-NPs was determined by dynamic light scattering. Enamine "click" chemistry increases the synthetic toolbox for the efficient synthesis of metal-free, ultra-small polymeric NPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel pH- and temperature-responsive diblock copolymers composed of poly(N-isopropylacrylamide) (PNIPAM) and poly[(L-glutamic acid)-co-(gamma-benzyl L-glutamate)] [P(GA-co-BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA-co-BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A convenient and cost-effective strategy for synthesis of hyperbranched poly(ester-amide)s from commercially available dicarboxylic acids (A(2)) and multihydroxyl secondary amine (CB2) has been developed. By optimizing the conditions of model reactions, the AB(2)-type intermediates were formed dominantly during the initial reaction stage. Without any purification, the AB(2) intermediate was subjected to thermal polycondensation in the absence of any catalyst to prepare the aliphatic and semiaromatic hyperbranched poly(ester-amide)s bearing multi-hydroxyl end-groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Branched polystyrenes with abundant pendant vinyl functional groups were prepared via radical polymerization of an asymmetric divinyl monomer, which possesses a higher reactive styryl and a lower reactive butenyl. Employing a fast reversible addition fragmentation chain transfer (RAFT) equilibrium, the concentration of active propagation chains remained at a low value and thus crosslinking did not occur until a high level of monomer conversion. The combination of a higher reaction temperature (120 degrees C) and RAFT agent cumyl dithiobenzoate was demonstrated to be optimal for providing both a more highly branched architecture and a higher polymer yield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile and efficient strategy for the syntheses of novel hyperbranched poly(ether amide)s (HPEA) from multihydroxyl primary amines and (meth)acryloyl chloride has been developed. The chemical structures of the HPEAs were confirmed by IR and NMR spectra. Analyses of SEC (size exclusion chromatography) and viscosity characterizations revealed the highly branched structures of the polymers obtained. The resultant hyperbranched polymers contain abundant hydroxyl groups. The thermoresponsive property was obtained from in situ surface modification of abundant OH end groups with N-isopropylacrylamide (NIPAAm). The study oil temperature-dependent characteristics has revealed that NIPAAm-g-HPEA exhibits an adjustable lower critical solution temperature (LCST) of about 34-42 degrees C depending on the grafting degree. More interestingly, the work provided an interesting phenomenon where the HPEA backbones exhibited strong blue photoluminescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable amphiphilic diblock copolymers based on an aliphatic ester block and various hydrophilic methacrylic monomers were synthesized using a novel hydroxyl-functionalized trithiocarbonate-based chain transfer agent. One protocol involved the one-pot simultaneous ring-opening polymerization (ROP) of the biodegradable monomer (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (L-lactide, LA) and reversible addition–fragmentation chain transfer (RAFT) polymerization of 2-(dimethylamino)ethyl methacrylate (DMA) or oligo(ethylene glycol) methacrylate (OEGMA) monomer, with 4-dimethylaminopyridine being used as the ROP catalyst and 2,2′-azobis(isobutyronitrile) as the initiator for the RAFT polymerization. Alternatively, a two-step protocol involving the initial polymerization of LA followed by the polymerization of DMA, glycerol monomethacrylate or 2-(methacryloyloxy)ethyl phosphorylcholine using 4,4′-azobis(4-cyanovaleric acid) as a RAFT initiator was also explored. Using a solvent switch processing step, these amphiphilic diblock copolymers self-assemble in dilute aqueous solution. Their self-assembly provides various copolymer morphologies depending on the block compositions, as judged by transmission electron microscopy and dynamic light scattering. Two novel disulfide-functionalized PLA-branched block copolymers were also synthesized using simultaneous ROP of LA and RAFT copolymerization of OEGMA or DMA with a disulfide-based dimethacrylate. The disulfide bonds were reductively cleaved using tributyl phosphine to generate reactive thiol groups. Thiol–ene chemistry was utilized for further derivatization with thiol-based biologically important molecules and heavy metals for tissue engineering or bioimaging applications, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis of polymersome-forming block copolymers using two different synthetic routes based on Atom Transfer Radical Polymerization (ATRP) and Reversible Addition Fragmentation chain Transfer (RAFT) polymerization, respectively. Functionalization with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) allowed the block copolymer chains to be labelled with electron-dense metal ions (e.g. indium). The resulting metal-conjugated copolymers can be visualized by transmission electron microscopy with single chain resolution, hence enabling the study of polymer/polymer immiscibility and phase separation on the nano-scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les polymères sensibles à des stimuli ont été largement étudiés ces dernières années notamment en vue d’applications biomédicales. Ceux-ci ont la capacité de changer leurs propriétés de solubilité face à des variations de pH ou de température. Le but de cette thèse concerne la synthèse et l’étude de nouveaux diblocs composés de deux copolymères aléatoires. Les polymères ont été obtenus par polymérisation radicalaire contrôlée du type RAFT (reversible addition-fragmentation chain-transfer). Les polymères à bloc sont formés de monomères de méthacrylates et/ou d’acrylamides dont les polymères sont reconnus comme thermosensibles et sensible au pH. Premièrement, les copolymères à bloc aléatoires du type AnBm-b-ApBq ont été synthétisés à partir de N-n-propylacrylamide (nPA) et de N-ethylacrylamide (EA), respectivement A et B, par polymérisation RAFT. La cinétique de copolymérisation des poly(nPAx-co-EA1-x)-block-poly(nPAy-co-EA1-y) et leur composition ont été étudiées afin de caractériser et évaluer les propriétés physico-chimiques des copolymères à bloc aléatoires avec un faible indice de polydispersité . Leurs caractères thermosensibles ont été étudiés en solution aqueuse par spectroscopie UV-Vis, turbidimétrie et analyse de la diffusion dynamique de la lumière (DLS). Les points de trouble (CP) observés des blocs individuels et des copolymères formés démontrent des phases de transitions bien définies lors de la chauffe. Un grand nombre de macromolécules naturels démontrent des réponses aux stimuli externes tels que le pH et la température. Aussi, un troisième monomère, 2-diethylaminoethyl methacrylate (DEAEMA), a été ajouté à la synthèse pour former des copolymères à bloc , sous la forme AnBm-b-ApCq , et qui offre une double réponse (pH et température), modulable en solution. Ce type de polymère, aux multiples stimuli, de la forme poly(nPAx-co-DEAEMA1-x)-block-poly(nPAy-co-EA1-y), a lui aussi été synthétisé par polymérisation RAFT. Les résultats indiquent des copolymères à bloc aléatoires aux propriétés physico-chimiques différentes des premiers diblocs, notamment leur solubilité face aux variations de pH et de température. Enfin, le changement d’hydrophobie des copolymères a été étudié en faisant varier la longueur des séquences des blocs. Il est reconnu que la longueur relative des blocs affecte les mécanismes d’agrégation d’un copolymère amphiphile. Ainsi avec différents stimuli de pH et/ou de température, les expériences effectuées sur des copolymères à blocaléatoires de différentes longueurs montrent des comportements d’agrégation intéressants, évoluant sous différentes formes micellaires, d’agrégats et de vésicules.