985 resultados para Convex Operator
Resumo:
In this paper, the exact value for the norm of directional derivatives, of all orders, for symmetric tensor powers of operators on finite dimensional vector spaces is presented. Using this result, an upper bound for the norm of all directional derivatives of immanants is obtained.
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
Convex cone, toric variety, graph theory, electrochemical catalysis, oxidation of formic acid, feedback-loopsbifurcations, enzymatic catalysis, Peroxidase reaction, Shil'nikov chaos
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2014
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper we prove that the solution of a backward stochastic differential equation, which involves a subdifferential operator and associated to a family of reflecting diffusion processes, converges to the solution of a deterministic backward equation and satisfes a large deviation principle.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We consider linear optimization over a nonempty convex semi-algebraic feasible region F. Semidefinite programming is an example. If F is compact, then for almost every linear objective there is a unique optimal solution, lying on a unique \active" manifold, around which F is \partly smooth", and the second-order sufficient conditions hold. Perturbing the objective results in smooth variation of the optimal solution. The active manifold consists, locally, of these perturbed optimal solutions; it is independent of the representation of F, and is eventually identified by a variety of iterative algorithms such as proximal and projected gradient schemes. These results extend to unbounded sets F.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
A coercive estimate for a solution of a degenerate second order di fferential equation is installed, and its applications to spectral problems for the corresponding dif ferential operator is demonstrated. The suffi cient conditions for existence of the solutions of one class of the nonlinear second order diff erential equations on the real axis are obtained.
Resumo:
We introduce an algebraic operator framework to study discounted penalty functions in renewal risk models. For inter-arrival and claim size distributions with rational Laplace transform, the usual integral equation is transformed into a boundary value problem, which is solved by symbolic techniques. The factorization of the differential operator can be lifted to the level of boundary value problems, amounting to iteratively solving first-order problems. This leads to an explicit expression for the Gerber-Shiu function in terms of the penalty function.
Resumo:
Tractography is a class of algorithms aiming at in vivo mapping the major neuronal pathways in the white matter from diffusion magnetic resonance imaging (MRI) data. These techniques offer a powerful tool to noninvasively investigate at the macroscopic scale the architecture of the neuronal connections of the brain. However, unfortunately, the reconstructions recovered with existing tractography algorithms are not really quantitative even though diffusion MRI is a quantitative modality by nature. As a matter of fact, several techniques have been proposed in recent years to estimate, at the voxel level, intrinsic microstructural features of the tissue, such as axonal density and diameter, by using multicompartment models. In this paper, we present a novel framework to reestablish the link between tractography and tissue microstructure. Starting from an input set of candidate fiber-tracts, which are estimated from the data using standard fiber-tracking techniques, we model the diffusion MRI signal in each voxel of the image as a linear combination of the restricted and hindered contributions generated in every location of the brain by these candidate tracts. Then, we seek for the global weight of each of them, i.e., the effective contribution or volume, such that they globally fit the measured signal at best. We demonstrate that these weights can be easily recovered by solving a global convex optimization problem and using efficient algorithms. The effectiveness of our approach has been evaluated both on a realistic phantom with known ground-truth and in vivo brain data. Results clearly demonstrate the benefits of the proposed formulation, opening new perspectives for a more quantitative and biologically plausible assessment of the structural connectivity of the brain.
Parts, places, and perspectives : a theory of spatial relations based an mereotopology and convexity
Resumo:
This thesis suggests to carry on the philosophical work begun in Casati's and Varzi's seminal book Parts and Places, by extending their general reflections on the basic formal structure of spatial representation beyond mereotopology and absolute location to the question of perspectives and perspective-dependent spatial relations. We show how, on the basis of a conceptual analysis of such notions as perspective and direction, a mereotopological theory with convexity can express perspectival spatial relations in a strictly qualitative framework. We start by introducing a particular mereotopological theory, AKGEMT, and argue that it constitutes an adequate core for a theory of spatial relations. Two features of AKGEMT are of particular importance: AKGEMT is an extensional mereotopology, implying that sameness of proper parts is a sufficient and necessary condition for identity, and it allows for (lower- dimensional) boundary elements in its domain of quantification. We then discuss an extension of AKGEMT, AKGEMTS, which results from the addition of a binary segment operator whose interpretation is that of a straight line segment between mereotopological points. Based on existing axiom systems in standard point-set topology, we propose an axiomatic characterisation of the segment operator and show that it is strong enough to sustain complex properties of a convexity predicate and a convex hull operator. We compare our segment-based characterisation of the convex hull to Cohn et al.'s axioms for the convex hull operator, arguing that our notion of convexity is significantly stronger. The discussion of AKGEMTS defines the background theory of spatial representation on which the developments in the second part of this thesis are built. The second part deals with perspectival spatial relations in two-dimensional space, i.e., such relations as those expressed by 'in front of, 'behind', 'to the left/right of, etc., and develops a qualitative formalism for perspectival relations within the framework of AKGEMTS. Two main claims are defended in part 2: That perspectival relations in two-dimensional space are four- place relations of the kind R(x, y, z, w), to be read as x is i?-related to y as z looks at w; and that these four-place structures can be satisfactorily expressed within the qualitative theory AKGEMTS. To defend these two claims, we start by arguing for a unified account of perspectival relations, thus rejecting the traditional distinction between 'relative' and 'intrinsic' perspectival relations. We present a formal theory of perspectival relations in the framework of AKGEMTS, deploying the idea that perspectival relations in two-dimensional space are four-place relations, having a locational and a perspectival part and show how this four-place structure leads to a unified framework of perspectival relations. Finally, we present a philosophical motivation to the idea that perspectival relations are four-place, cashing out the thesis that perspectives are vectorial properties and argue that vectorial properties are relations between spatial entities. Using Fine's notion of "qua objects" for an analysis of points of view, we show at last how our four-place approach to perspectival relations compares to more traditional understandings.